Ứng dụng công nghệ GNSS-R (phản xạ GNSS) để phát hiện các sự kiện thủy văn cực đoan (ví dụ cơn bão Xynthia năm 2010 tại Pháp)
Trong nghiên cứu này, chúng tôi đã sử dụng 3 tháng dữ liệu GNSS (từ tháng 1 đến tháng 3 năm 2010)
từ trạm quan trắc GNSS đặt tại SCOA, phía nam vịnh Biscay, thuộc mạng lưới RGP (mạng lưới GNSS
cố định) của Pháp để phát hiện cơn bão Xynthia (đổ bộ vào bờ biển Đại Tây Dương, Pháp ngày 28
tháng 2 năm 2010). Cơn bão này đã gây ra lũ lụt trên diện rộng và hậu quả nghiêm trọng đối với vùng
cửa sông Gironde. Việc phân tách các thành phần thủy triều và xác định cơn bão Xynthia đã đạt được
bằng cách sử dụng kỹ thuật mô hình giao thoa IPT (Interference Pattern Technique) kết hợp kỹ thuật
phân tích phổ đơn SSA (Singular Spectrum Analysis) và phương pháp biến đổi wavelet liên tục CWT
(Continuous Wavelet Transform)
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tóm tắt nội dung tài liệu: Ứng dụng công nghệ GNSS-R (phản xạ GNSS) để phát hiện các sự kiện thủy văn cực đoan (ví dụ cơn bão Xynthia năm 2010 tại Pháp)
ỨNG DỤNG CÔNG NGHỆ GNSS-R (PHẢN XẠ GNSS) ĐỂ PHÁT HIỆN CÁC SỰ KIỆN THỦY VĂN CỰC ĐOAN (VÍ DỤ CƠN BÃO XYNTHIA NĂM 2010 TẠI PHÁP) Vũ Phương Lan1*, Hà Minh Cường2, Đinh Thị Bảo Hoa1, Nguyễn Thị Thúy Hằng1, Bùi Quang Thành1, Phạm Văn Mạnh1 , Phạm Vũ Đông1 1 Khoa Địa lý, Trường Đại học Khoa học Tự nhiên – Đại học Quốc gia Hà Nội 2 Viện công nghệ hàng không vũ trụ, Trường Đại học Công nghệ – Đại học Quốc gia Hà Nội E-mail tác giả liên hệ: lanvuphuong.rsc@gmail.com TÓM TẮT Trong nghiên cứu này, chúng tôi đã sử dụng 3 tháng dữ liệu GNSS (từ tháng 1 đến tháng 3 năm 2010) từ trạm quan trắc GNSS đặt tại SCOA, phía nam vịnh Biscay, thuộc mạng lưới RGP (mạng lưới GNSS cố định) của Pháp để phát hiện cơn bão Xynthia (đổ bộ vào bờ biển Đại Tây Dương, Pháp ngày 28 tháng 2 năm 2010). Cơn bão này đã gây ra lũ lụt trên diện rộng và hậu quả nghiêm trọng đối với vùng cửa sông Gironde. Việc phân tách các thành phần thủy triều và xác định cơn bão Xynthia đã đạt được bằng cách sử dụng kỹ thuật mô hình giao thoa IPT (Interference Pattern Technique) kết hợp kỹ thuật phân tích phổ đơn SSA (Singular Spectrum Analysis) và phương pháp biến đổi wavelet liên tục CWT (Continuous Wavelet Transform) Từ khóa: GNSS-R, Bão dâng (surge storm), Thủy triều, Phân tích phổ đơn SSA, phương pháp biến đổi wavelet liên tục CWT MỞ ĐẦU Mực nước biển dâng do biến đổi khí hậu gây ra những tác động tiêu cực đến khu vực ven biển không chỉ lũ lụt mà còn gia tăng các hiện tượng cực đoan như biến động mực nước do bão dâng, bão nhiệt đới, với mức độ tàn phá khủng khiếp [1, 2]. Những thay đổi về điều kiện khí hậu cũng làm tăng tần suất và biên độ của bão dâng ở nhiều khu vực khác nhau [3, 4, 5], gây ra mối đe dọa lớn đối với dân cư sống ở các vùng ven biển [6]. Nước dâng do bão được định nghĩa là sự khác biệt giữa thủy triều quan sát và thủy triều thiên văn. Sự khác nhau này là do các hiện tượng khí hậu cực đoan như bão, lũ[7, 8]. Khi có sự kết hợp của các hiện tượng cực đoan như thủy triều cao và bão đặc trưng bởi lượng mưa lớn, sóng mạnh, nước dâng do bão có thể gây lên ngập lụt cho các khu vực ven biển [9, 10]. Pháp là một quốc gia có lãnh thổ chính nằm tại Tây Âu trải dài từ Địa Trung Hải đến eo biển Manche và biển Bắc và từ sông Rhin đến Đại Tây Dương. Trong những năm gần đây, Pháp đã trải qua nhiều cơn bão lớn như bão Oritia năm 2000, lốc xoáy năm 2007, lốc xoáy châu Âu năm 2008, bão Xynthia năm 2010, bão Joachim năm 2011, thủy triều dâng Xavier năm 2013, bão Darwin năm 2014, bão Zeus năm 2017 và bão David năm 2018. Một loạt các hiện tượng khí hậu cực đoan xảy ra với tần suất và cường độ ngày càng tăng đòi hỏi nhu cầu cấp thiết về giám sát và xây dựng hệ thống cảnh báo bão sớm dọc theo bờ biển Pháp/ Châu Âu. Các trạm GNSS trắc địa cố định nằm ở vị trí cao tại khu vực ven biển có thể được sử dụng cho mục đích này. Cơn bão Xynthia xảy ra trong hai ngày 27-28 tháng 2 năm 2010 đã ảnh hưởng đến phía nam Châu Âu, chủ yếu là vùng ven biển Tây Ban Nha và Pháp của vịnh Biscay, gây thiệt hại nghiêm trọng [11, 12, 13]. Sức gió lên tới 160 km/h và áp suất thấp từ 1000 đến 977 hPa đã được ghi lại tại trạm khí tượng trong suốt hành trình của cơn bão là nguyên nhân gây ra một cơn bão dâng lớn dọc theo bờ vịnh Biscay [14, 15]. Tại trạm đo triều La Rochelle ghi nhận mực nước dâng 1,53 m (8,01 m so với mực nước 0), mức trủy triều cao như vậy chưa từng được ghi nhận kể từ khi thiết lập máy đo thủy triều tại trạm này vào năm 1997. Mực nước dâng do bão cũng ở mức lớn nhất được ghi nhận tại trạm đo triều Brest (1,42 m) trong 150 năm qua [12]. Chính vì vậy, việc tăng cường các cảm biến và trạm quan sát là rất quan trọng để thiết lập một hệ thống giám sát và cảnh báo có cấu trúc tốt, đảm bảo an toàn cho người dân sống tại khu vực ven biển. Hiện tại, việc giám sát dài hạn được đảm bảo bằng các đồng hồ đo thủy triều sử dụng kỹ thuật radar để đo thủy triều dọc bờ biển Pháp. Kỹ thuật phản xạ GNSS (GNSS-R) đã chứng minh tiềm năng mạnh mẽ trong việc giám sát các biến thể bề mặt nước biển (SSH) kể từ giữa năm 90 dựa trên phân tích dạng sóng của tín hiệu thu được [16, 17, 18]. Các trạm thu tín hiệu của mạng lưới GNSS cố định được đặt ở các khu vực ven biển có thể được sử dụng làm thước đo thủy triều nhờ việc ghi lại dữ liệu SNR (Signal- to-Noise Ratio) [19, 20]. Không giống như các máy đo thủy triều cổ điển được đặt trong các thiết bị bảo vệ có tác dụng giảm tác động của sóng đối với tín hiệu, chuỗi thời gian mực nước biển dựa trên GNSS-R chứa cả thành phần thủy triều và các thông tin khác như sóng, nước dâng do bão, thủy triều dâng hay ảnh hưởng của gió và áp suất khí quyển [21]. Trong nghiên cứu này, dữ liệu SNR được ghi lại từ trạm quan trắc GNSS Socoa (phía tây nam nước Pháp) đã được sử dụng để xác định biến thể mực nước biển từ tháng 1 đến tháng 3 năm 2010 tại vịnh Saint Jean de Luz. Hai phương pháp phân tích phổ đơn (SSA) và phương pháp biến đổi wavelet liên tục (CWT) đã được áp dụng để phân tích chuỗi biến thể mực nước biển từ dữ liệu SNR nhằm tách thành phần thủy triều ra khỏi các tín hiệu vật lý khác. Các tín hiệu còn lại trong phần dư được so sánh với mực nước dâng (surge) ước tính, nước dâng do ảnh hưởng của áp suất khí quyển, sóng và tốc độ gió để xác định bản chất của chúng và xác định cơn bão Xynthia dựa trên tín hiệu thu nhận được. I. KHU VỰC NGHIÊN CỨU Các phân tích trong nghiên cứu này được thực hiện trong vịnh Saint Jean de Luz, nằm phía đông vịnh Biscay, dọc theo biển Đại Tây Dương của Pháp, cách khoảng vài km tính từ phía bắc Tây Ban Nha (hình 1a). Hình 1: a) Vị trị trạm thu GNSS SCOA (43°23'42.83"N, 01°40'54.05"O); b) hình ảnh ăngten TRM55971.00 đặt trên mái nhà ở độ cao 10.66 m so với mặt nước biển ( Trong nhiều thế kỷ, nơi này đã bị ảnh hưởng bởi những cơn bão mạnh và thường xuyên bị ngập lụt. Vào giữa thế kỷ 19, để bảo vệ khu vực khỏi thủy triều đại dương, một đê chắn sóng đã được xây dựng. Khu vực nghiên c ... sau khi đi theo một đường dẫn khác ngoài đường dẫn trực tiếp. Những tín hiệu nhiễu này có ảnh hưởng bất lợi đến các phép đo định vị và người ta thường tìm cách loại bỏ chúng trong bài toán trắc địa cổ điển. Hình 2: Nguyên lý của máy đo thủy triều GNSS sử dụng 1 ăngten đơn cho việc phân tích tín hiệu SNR. Trong đó ϴ là góc cao vệ tinh, h là độ cao phản xạ. Ngược lại, trong GNSS-R, việc phân tích các nhiễu này sẽ cung cấp thông tin hữu ích về tín hiệu phản xạ và do đó cung cấp các đặc điểm của bề mặt phản xạ. Tỉ số tín hiệu trên nhiễu SNR là một trong những tín hiệu cơ bản được thu bởi máy thu GNSS và thường được ghi lại ở mỗi bước đo và cho từng tần số. 3.2. Nghịch đảo dữ liệu SNR để ước tính chiều cao mực nước (SSH) Dữ liệu SNR thu được từ trạm GNSS Socoa được nghịch đảo để tính SSH bằng kỹ thuật mô hình giao thoa (IPT) được phát triển bởi Larson, 2008. SNR tức thời được tính bởi công thức: SNR6 = A86 + A96 + 2 A8A9 cosy Trong đó, 𝐴$ và 𝐴> là biên độ của đa đường và tín hiệu trực tiếp tương ứng, ψ là độ lệch pha giữa hai tín hiệu. Giả sử rằng 𝐴$ ≪ 𝐴>, SNR có thể được tính bởi công thức : SNR ≈ 𝐴>6 +2𝐴>𝐴$ cos𝜓 Các tín hiệu phản xạ chủ yếu được quan sát với góc cao vệ tinh thấp, giả sử bề mặt biển tương ứng với phản xạ gương, góc pha tương đối có thể được suy ra từ mặt hình học do độ trễ của tín hiệu phản xạ nhận được [28]: 𝜓 = 6AB δ = CADB sin 𝜀 Trong đó λ là chiều dài bước sóng, ε độ cao vệ tinh và h là khoảng cách dọc giữa tâm ăng-ten và bề mặt phản xạ. Tần số của dao động đa đường có thể được tính như sau: 𝑓 = >I># = CADB sin(𝜀) + CADB cos(𝜀) 𝜀 Trong đó: ℎ (= >D>#) là vận tốc dọc của bề mặt phản xạ (do sóng và thủy triều) ; 𝑓 là tần số giao động của đa đường ; 𝜀 là góc cao vệ tinh ; 𝜀 là vận tốc góc cao vệ tinh. 3.3. Phân tích thành phần chính của chuỗi dữ liệu mực nước từ GNSS-R sử dụng phương pháp phân tích phổ đơn SSA Trong nghiên cứu này, SSA đã được áp dụng để phân tách chuỗi thời gian mực nước dựa trên GNSS-R, sau đó được tái cấu trúc lại bằng cách sử dụng một phiên bản sửa đổi của thuật toán MATLAB (Claessen et al, 2002). Sự đóng góp của phương sai chính tương ứng với bốn thành phần chính đầu tiên của SSA chiếm hơn 95% phương sai (hình 3). Thành phần chính thứ nhất và thứ hai (RC1 và RC2) được sử dụng để tách thành phần thủy triều. Thành phần chính thứ ba (RC3) biểu thị mực nước do thay đổi áp suất khí quyển, hay còn gọi là hiện tượng phong vũ biểu đảo ngược (IB), và gió, được sử dụng để xác định dấu hiệu của cơn bão Xynthia. Thành phần chính thứ 4 bao gồm các loại nhiễu (được loại bỏ trong quá trình tính toán). Hình 3: Chuỗi dữ liệu mực nước tại Socoa và 4 thành phần chính đầu tiên và các giá trị riêng của nó (λ) được biểu thị bằng % phương sai được giải thích. 3.4. Phân tích chuỗi thời gian mực nước từ GNSS-R sử dụng phương pháp biến đổi wavelet liên tục (CWT) Phương pháp CWT được dùng để phân tách tín hiệu thành các sóng con nhằm mô phỏng và tái hiện lại cơn bão Xynthia theo tần số trong tín hiệu GNSS-R. Trong nghiên cứu này, phân tích CWT được thực hiện dựa trên phiên bản sửa đổi của công cụ cross wavelet and wavelet coherence trong MATLAB (Daubechies et al, 1990). IV. KẾT QUẢ 4.1. Kết hợp hai phương pháp SSA và CWT để tách thành phần thủy triều khỏi các tín hiệu vật lý khác Mực nước ước tính từ dữ liệu GNSS-R không chỉ chứa các thành phần thủy triều mà còn chứa các tín hiệu địa vật lý khác. So sánh trực tiếp với dữ liệu đo thủy triều ở trạm Socoa cho kết quả thống kê rất tốt. SSA và iCWT (inverse CWT) là các công cụ bổ sung để phân tích các ước tính SSH của GNSS-R: cho phép ước tính tốt về thủy triều (Hình 4). 4.2. Phát hiện cơn bão Xynthia từ dữ liệu GNSS-R Trong suốt thời gian xảy ra bão, SSH bị ảnh hưởng đáng kể từ các tác động khác như áp suất khí quyển (còn gọi là phong vũ biểu ngược IB), gió, sóng gây ra các đợt nước dâng do bão (surge). Kết quả so sánh giữa các thành phần RC3 với tốc độ gió được thể hiện trong hình 5a, ℎ"#$%& trong hình 5b, surge trong hình 5c và SWH (được đo tại phao Anglet cách trạm Socoa khoảng 20 km) trong hình 5d. Một tương quan tốt đã được tìm thấy giữa RC3 và áp suất khí quyển (R = 0.70) và surge (R = 0.72) trong toàn bộ chu kỳ quan sát. Một tương quan thấp với tốc độ gió và sóng có thể được giải thích do phần bên trong vịnh được bảo vệ bởi đê chắn sóng làm giảm phần lớn biên độ sóng do gió gây ra. Nếu chúng ta tập trung phân tích vào 4 ngày của cơn bão Xynthia (từ 27 tháng 2 đến 2 tháng 3 năm 2010), mối tương quan tăng lên với ba biến môi trường được xem xét ở đây : R = 0.73, 0.77 và 0.65 cho ℎ"#$%&, surge, và tốc độ gió tương ứng. Hình 4 : Kết quả so sánh giữa các đồng hồ đo thủy triều tại chỗ và: a) Dữ liệu GNSS-R dựa trên SSH; b) tổng của (RC1 + RC2) bằng phương pháp SSA; c) CWT nghịch đảo ở tần số 12h; d) CWT nghịch đảo từ 6h đến 12h tần số. Hình 5 : Phần dư của chuỗi mực nước (RC3) được so sánh với a) tốc độ gió; b) áp suất khí quyển đo tại trạm khí tượng Socoa; c) nước dâng do bão (surge) và d) độ cao sóng đo được tại trạm Anglet cách Socoa khoảng 20 km. Hình 6 : a) XWT cho RC3 (SSA) và tổng the surge và 𝒉𝒂𝒕𝒎𝒐𝒔; b) chuỗi thời gian RC3 và tổng the surge và 𝒉𝒂𝒕𝒎𝒐𝒔 từ tháng 1 đến tháng 3 năm 2010 tại Socoa. Một tương quan wavelet chéo (XWT) và tương quan tuyến tính giữa RC3 và tổng của surge và ℎ"#$%& đã được thực hiện (hình 6a và b) tương ứng. Tương quan cao hơn đã được tìm thấy trong khoảng thời gian dài. Mối tương quan rất cao được quan sát giữa hai biến trong khoảng thời gian cao hơn hai tuần. Khi sự đột biến (surge) và IB có liên quan chặt chẽ với nhau, RC3 có thể được coi là dấu vết của cơn bão trên tín hiệu SSH của GNSS-R. V. KẾT LUẬN VÀ KIẾN NGHỊ Nghiên cứu này là ví dụ thuyết phục đầu tiên về việc sử dụng kỹ thuật GNSS-R để phát hiện dấu hiệu của bão trên SSH thông qua các kỹ thuật phân rã tín hiệu như SSA và CWT. Một trong những chế độ phân rã SSA có liên quan đến sự biến đổi theo thời gian của sự đột biến (surge) và biến động khí quyển thông qua IB (R = 0,77) cho thời gian nghiên cứu khi kết hợp cả hai hiệu ứng. CWT cho phép xác định các giai đoạn chính của các tín hiệu địa vật lý khác nhau có trong SSH GNSS-R. Cơn bão Xynthia xuất hiện trong tín hiệu GNSS-R ở tần số cao (4h đến 8h) và tần số thấp (4 đến 16 ngày). Nghiên cứu của chúng tôi xác nhận rằng phương pháp tiếp cận GNSS-R có thể ước tính SSH với độ chính xác gần tương tự như đồng hồ đo thủy triều (R = 0,99 và RMSE = 0,16 m). Giá trị bổ sung chính của nó là thể hiện khả năng của kỹ thuật GNSS-R dựa trên đảo ngược SNR để phát hiện bão. Nếu chúng ta chỉ xem xét các góc tới rất thấp (0 ° -5 °), khoảng cách giữa trạm trắc địa GNSS và các điểm phản xạ xa nhất có thể đạt tới vài km: 8 km cho độ cao ăng ten 60 m so với mực nước biển và đến ~ 28 km cho độ cao ăng ten 250 m [29]. GNSS-R SSH cũng có thể được sử dụng để cảnh báo sớm trong trường hợp bão và sóng thần lớn. APPLICATION OF GNSS REFLECTOMETRY (GNSS-R) FOR DETECTION OF HYDROLOGICL EVENTS (FOR EXAMPLE XYNTHIA STORM 2010 IN FRANCE) Phuong Lan Vu1*, Minh Cuong Ha2, Thi Bao Hoa Dinh1, Thi Thuy Hang Nguyen1, Quang Thanh Bui1, Van Manh Pham1 , Vu Dong Pham1 1 Faculty of Geography, VNU University of Science 2 School of Aerospace Engineering, VNU University of Engineering and Technology *Corresponding author. Email address: lanvuphuong.rsc@gmail.com ABSTRACT In this study, 3 months of records (January-March 2010) acquired by a geodetic GNSS station from the permanent network of RGP (Réseau GNSS Permanent), located in SCOA station, in the south of the Bay of Biscay to identify the Xynthia storm (hit the French Atlantic coast on February 28, 2010). This storm causing large floods and damages for the Gironde estuary. The separation of the tide components and the identification of Xynthia storm was achieved using the Interference Pattern Technique (IPT), a singular spectrum analysis (SSA) and a continuous wavelet transform (CWT). TÀI LIỆU THAM KHẢO [1] Fritz HM, Blount C, Sokoloski R, Singleton J, Fuggle A, McAdoo BG, Moore A, Grass C, Tate B. (2007), Hurricane Katrina storm surge distribution and field observations on the Mississippi Barrier Islands Estuarine, Coast Shelf Sci, p. 12–20. [2] Soria JLA, Switzer AD, Villanoy CL, Fritz HM, Bilgera PHT, Cabrera OC, Siringan FP, Maria YY-S, Ramos RD, Fernandez IQ (2016), Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bull Am Meteor Soc, pp. 31-48. [3] Karim, M.F., Mimura N. (2008). Impacts of climate change and sea level rise on cyclonis storm surge floods in Bangladesh. Global Environmental Change, Vol.18, pp. 490-500. [4] Bondesanf, M., Castiglioni G.B, Elmis C, Pirazzolift P.A, Tomasin A. (1995). Coastal areas at risk from storm surges and sea level rise in northestern Italy, Journal of Coastal Research, Vol.11, pp. 1354-1379. [5] Tebaldi, C.; Strauss, B.H.; Zervas, C.E. (2012), Modelling sea level rise impacts on storm surges along US coasts, Environmental Research Letters. vol.7, doi:10.1088/1748-9326/7/1/014032. [6] McGranahan, G.; Balk, D.; Anderson, B. (2007), The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones, Environment and Urbanization, vol. 7. [7] Bode, L.; Hardy, T.A. (1997), Progress and recent developments in storm surge modeling, Journal of Hydraulic Engineering, vol. 123, pp. 315-331. [8] Olbert, A.L.; Hartnett, M. (2010), Storms and surges in Irish coastal waters, Ocean Modelling, vol. 34, pp. 50-62. [9] McRobie, A.; Spencer, T.; Gerritsen, H. (2005), The Big Flood: North Sea storm surge, Philosopical Transactions of the Royal Society A: Mathematical, Physical and Engineering sciences, vol. 363, https://doi.org/10.1098/rsta.2005.1567. [10] De Zolt, S.; Lionello, P.; Nuhu, A.; Tomasin, A. (2006), The disastrous storm of 4 November 1966 on Italy, Natural Hazards and Earth System Sciences, vol. 6, pp. 861-879. [11] Bertin, X.; Bruneau, N.; Breilh, J.F.; Fortunato, A.B.; Karpytchev, M. (2012), Importance of wave age and resonance in storm surges: The case Xynthia, Bay of Biscay, Ocean Modelling, vol. 42, pp. 16-30. [12] Pineau-Guillou, L.; Lathuiliere, C.; Magne, R.; Louazel, S.; Corman, D.; Perherin, C. (2012), Sea levels analysis and surge modelling during storm Xynthia. European Journal of Environmental and Civil Engineering, vol. 16, pp. 943–952. [13] Genovese, E.; Przyluski, V. (2013), Storm surge disaster risk management: the Xynthia case study in France., Journal of Risk Research, vol. 16. DOI: 10.1080/13669877.2012.737826. [14] Vinet, F.; Defossez, S.; Rey, T.; Boissier, L. (2012), The production process of fl ooding risk in coastal area: the example of “Xynthia” areas. Norois Environnement, aménagement, société. [15] Przyluski, V.; Hallegatte, S. (2014), Gestion des risques naturels- Lecons de la tempête Xynthia, HAL Id: hal-01079801. [16] Martin-neira, M. (1993), A Passive Reflectometry and Interferometry System (PARIS): Application to ocean altimetry. ESA Journal, pp. 331-355. [17] Martin-neira, M.; Caparrini, M.; Font-Rossello, J.; Lannelongue, S.; Vallmitjana, C.S. (2001), The PARIS Concept: An Experimental Demonstration of Sea Surface Altimetry Using GPS Reflected Signals. IEEE Transactions on Geoscience and Remote Sensing, vol. 39. DOI: 10.1109/36.898676. [18] Lowe, S.T.; Zuffada, C.; Chao, Y.; Kroger, P.; Young, L.E.; LaBrecque, J.L. (2002), 5-cm- Precision aircraft ocean altimetry using GPS reflections, Geophysical Research Letters. vol. 29. [19] Roussel, N.; Ramillien, G.; Frappart, F.; Darrozes, J.; Gay, A. ; Biancale, R.; Striebig, N.; Hanquiez, V.; Bertin, X.; Allain, D.(2015), Sea level monitoring and sea state estimate using a single geodetic receiver, Remote Sensing of Environment, vol. 171, pp. 261-277. [20] Larson, K.M.; Löfgren, J.S.; Haas, R. (2013) Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research. vol. 51, pp. 1301-1310. [21] Roussel, N.; Frappart, F.; Ramillien, G.; Darrozes, J.; Baup, F. ; Lestarquit, L.; Ha, M.C. (2016), Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2° to 70°, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. vol. 9, pp. 4781–4794. [22] Abadie, S.; Butel, R.; Dupuis, H.; Brière, C. (2005), Statistical parameters of waves on the south Aquitaine Coast, Comptes Rendus Geoscience, vol. 337, pp. 769-776. [23] Delpey, M.T.; Ardhuin, F.; Otheguy, P.; Jouon, A. (2014), Effects of waves on coastal water dispersion in a small estuarine bay, Journal of Geophysical Research: Oceans, vol. 119, pp. 70- 86. [24] Platel, J.P. (2017), Atlas cartographique des phénomènes naturels et des caractéristiques physiques du littoral de la Cote Basque. Rapport final, BRGM/RP-55262-FR. [25] Pingree, R.D.; Mardell, G.T.; New, A.L. (1986), Propagation of internal tides from the upper slopes of the Bay of Biscay, Nature, vol. 321, pp. 154-158. [26] New, A.L. (1988), Internal tidal mixing in the Bay of Biscay, Deep Sea Research Part A. Oceanographic Research Papers, vol. 35, pp. 691-709. [27] Wunsch, C.; and Stammer, D. (1997), Atmospheric loading and the oceanic “Inverted barometer” effect, Reviews of Geophysic, Vol. 35. Pages 79-107. [28] Bishop, G.J.; Klobuchar, J.A.; Doherty, P.H. (1985), Multipath effects on the determination of absolute ionospheric time delay from GPS signals, Radio Science, vol. 20, pp. 388-396. [29] Roussel, N.; Frappart, F.; Ramillien, G.; Darrozes, J.; Desjardins, C.; Gegout, P.; Pérosanz, F.; Biancale, R. (2014), Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments, Geosci. Model Dev, vol. 7, pp. 2261-2279.
File đính kèm:
- ung_dung_cong_nghe_gnss_r_phan_xa_gnss_de_phat_hien_cac_su_k.pdf