Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021

Câu 44. Xác định tập hợp các điểm M trong mặt phẳng phức biểu diễn các số phức z thỏa mãn điều

kiện: | 1 | 1 z i    .

A. Đường tròn tâm I(-1;-1), bán kính R = 1.

B. Hình tròn tâm I(1;-1), bán kính R = 1.

C. Hình tròn tâm I(-1;-1), bán kính R = 1 (kể cả những điểm nằm trên đường tròn).

D. Đường tròn tâm I(1;-1), bán kính R = 1.

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021 trang 1

Trang 1

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021 trang 2

Trang 2

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021 trang 3

Trang 3

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021 trang 4

Trang 4

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021 trang 5

Trang 5

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021 trang 6

Trang 6

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021 trang 7

Trang 7

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021 trang 8

Trang 8

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021 trang 9

Trang 9

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021 trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 12 trang viethung 7600
Bạn đang xem 10 trang mẫu của tài liệu "Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021

Đề cương ôn tập học kỳ II môn Toán Khối 12 - Năm học 2020-2021
TRƯỜNG THPT XUÂN ĐỈNH 
1 
NĂM HỌC 2020 – 2021 
MÔN: TOÁN - KHỐI: 12 
A. KIẾN THỨC ÔN TẬP 
I. GIẢI TÍCH: Ứng dụng tích phân, số phức. 
II. HÌNH HỌC: Phương trình mặt cầu, mặt phẳng, đường thẳng. 
B. CÂU HỎI TRẮC NGHIỆM 
I. GIẢI TÍCH 
1. Ứng dụng tích phân 
Câu 1. Diện tích S của hình phẳng tô đậm trong hình dưới đây được tính theo công thức nào sau đây? 
A.
2 4
0 2
( ) ( )S f x dx f x dx B.
2 4
0 2
( ) ( )S f x dx f x dx 
C.
2 4
0 2
( ) (x)dxS f x dx f D.
4
0
( )S f x dx 
Câu 2. Diện tích S của hình phẳng giới hạn giới hạn bởi đồ thị hàm số 3 23 2y x x , hai trục 
tọa độ và đường thẳng 2x là 
A.
3
2
S B.
7
2
S C. 4S D.
5
2
S 
Câu 3. Thể tích khối tròn xoay được tạo thành khi quay quanh trục Ox hình phẳng giới hạn bởi các 
đường y x , 2y x và 0y là 
A.
2
7
 B. C.
3
2
 D.
5
6
Câu 4. Tính diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số 2 , 2y x y x . 
A. 
3
20
S . B. 
20
3
S . C. 
4
3
S . D. 
3
4
S . 
Câu 5. Thể tích V của phần vật thể giới hạn bởi mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể 
bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x 1 3x thì được thiết diện là 
một hình chữ nhật có độ dài hai cạnh là 3x và 23 2x . 
A. 32 2 15V . B. 
124
3
V
 . C. 
124
3
V . D. 32 2 15V . 
TRƯỜNG THPT XUÂN ĐỈNH 
2 
Câu 6. Diện tích hình phẳng giới hạn bởi đồ thị hàm số 1 1( )y f x C , 2 2( )y f x C liên tục trên 
đoạn [a;b] và hai đường thẳng x a , x b được xác định: 
A. 1 2 x
b
a
S f x f x d 
B. 1 2 x
b
a
S f x f x d 
C. 
1 2
1 2
1 2 2 1 1 2x x x
c c b
a c c
S f x f x d f x f x d f x f x d 
D. 
1
1
1 2 1 2x x
c b
a c
S f x f x d f x f x d 
Câu 7. Diện tích hình phẳng giới hạn bởi các đường y x và 2 0x y bằng với diện tích hình 
nào sau đây ? 
A. Diện tích hình vuông có cạnh bằng 2 . 
B. Diện tích hình chữ nhật có chiều dài, chiều rộng lần lượt 5 và 3 . 
C. Diện tích hình tròn có bán kính bằng 3 . 
D. Diện tích toàn phần khối tứ diện đều có cạnh bằng 
42 3
3
. 
Câu 8. Thể tích vật thể tròn xoay sinh ra khi hình phẳng giới hạn bởi các parabol 
24y x và
22y x quay quanh trục Ox là kết quả nào sau đây? 
A. 10 .V B. 12 .V C. 14 .V D. 16 .V 
Câu 9. Diện tích hình phẳng giới hạn bởi các đồ thị ( )y f x và ( )y g x liên tục trên đoạn [ ; ]a b và 
hai đường thẳng ;x a x b là 
A. ( ) ( ) .
b
a
f x g x dx B. ( ) ( ) .
b
a
f x g x dx C. ( ) ( ) .
b
a
f x g x dx D. ( ) ( ) .
b
a
f x g x dx 
Câu 10. Diện tích hình phẳng giới hạn bởi đồ thị hàm số 2 1y x , trục hoành và 2 đường thẳng 
1; 3x x là 
A. 
3
2
1
1 .x dx B. 
3
2 2
1
( 1) .x dx C. 
3
2
1
( 1) .x dx D. 
3
2 2
1
( 1) .x dx 
Câu 11. Cho hàm số ( )y f x liên tục và không âm trên [ ; ]a b Hình phẳng giới hạn bởi đồ thị hàm số 
, trục hoành và hai đường thẳng ;x a x b quay quanh trục hoành tạo nên một khối tròn xoay. Thể 
tích khối tròn xoay là 
A. ( ) .
b
a
f x dx B. ( ) .
a
b
f x dx C. 
2 ( ) .
b
a
f x dx D. 
2 ( ) .
a
b
f x dx 
Câu 12. Cho đồ thị hàm số y=f(x) 
 Diện tích hình phẳng (gạch trong hình) là 
1
( )C
2
( )C
a
1
c
y
O b x2c
TRƯỜNG THPT XUÂN ĐỈNH 
3 
A. 
43
0 0
f x dx f x dx
 B. 
13
1 4
f x dx f x dx
 C. 
0
3 4
0
f x dx f x dx
 D. 
4
3
f x dx
Câu 13. Nếu gọi S là diện tích của hình phẳng được giới hạn bởi các đường 
0; ; 0; .
2
xx x y y cosx e
 thì khẳng định nào đây là đúng ? 
A. 2S e
 B. 2 1S e
C. 2
1
1
2
S e
 D. S e 
Câu 14. Diện tích miền hình phẳng giới hạn bởi các đường 2xy , 3y x , 1y bằng 
A. 
1
3
ln 2
 . B. 
1 1
ln 2 2
 . C. 
1
1
ln 2
 . D. 
1
2
ln 2
 . 
Câu 15. Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số 2y = x 2; x y 
quanh trục ox là 
A. 
2
10
 B. 
4
3
 C. 
10
 D. 
3
10
Câu 16. Ký hiệu (H) là hình phẳng giới hạn bởi các đường sin cos , 0, 0, 
2
 y x x a y x x 
với a là tham số thực lớn hơn 2. Tìm a sao cho thể tích V của khối tròn xoay thu được khi quay hình 
(H) xung quanh trục hoành bằng 
23
2
. 
A. 3 a B. 4 a C. 6 a D. 9 a 
Câu 17. Hình vuông OABC có cạnh bằng 4 được chia thành hai phần bởi đường cong C có 
phương trình 2
1
4
y x . Gọi 1S , 2S là diện tích của phần không bị gạch và phần bị gạch (như hình 
vẽ sau). Tính tỉ số 1
2
S
S
A. 1
2
3
2
S
S
 . B. 1
2
2
S
S
 . C. 1
2
1
S
S
 . D. 1
2
1
2
S
S
 . 
Câu 18. Diện tích hình phẳng giới hạn bởi hai đường: 2 4 3 ,y x x 1.x bằng 
A. 107 .
6
 B. 109.
6
 C. 109.
7
 D. 109.
8
Câu 19. Cho hình phẳng H giới hạn bởi 22 ,y x x 0y . Tính thể tích của khối tròn xoay thu 
được khi quay H xung quanh trục Ox ta được 1aV
b
với ,a b và 
a
b
 là phân số tối 
TRƯỜNG THPT XUÂN ĐỈNH 
4 
giản. Tính , .a b 
A. 1, 15a b . B. –7, 15a b . C. 241, 15a b . D. 16, 15a b 
Câu 20. Cho hàm số f x liên tục trên đoạn  ;a b . 
Khi quay hình phẳng như hình vẽ trên quanh trục Ox ta được khối tròn xoay có thể tích là 
A. 
2
 d
b
a
f x x . B. 
2
 d
b
a
f x x . C. 
2
 d
b
a
f x x . D. d
b
a
f x x . 
2. Số phức – các phép toán – căn bậc hai – phương trình bậc hai 
Câu 21. Có bao nhiêu số phức z thỏa mãn 10z đồng thời phần ảo gấp ba lần phần thực 
A. 1 B. 2 C. 3 D. 4 
Câu 22. Gọi A và B lần lượt là hai điểm biểu diễn của hai số phức 5 3z i và ' 3 5z i . Kết luận 
nào sau đây là đúng? 
A. A và B đối xứng nhau qua trục hoành B. A và B đối xứng nhau qua trục tung 
C. A và B đối xứng nhau qua gốc tọa độ D. A và B đối xứng nhau qua đường thẳng 
y x 
Câu 23. Cho số phức thỏa mãn . Môđun của số phức là 
A. 4 B. 9 C. 13 D. 13 
Câu 24. Biết điểm A(3;-2) là điểm biểu diễn của số phức z. Hỏi số phức liên hợp z của z là 
A. 3 2z i B. 3 2z i C. 3 2z i D. 3 2z i 
Câu 25. Tìm số phức z thỏa mãn 
2
1 1 1
1 2 1 2z i i
A. 
8 14
25 25
z i B. 
8 14
25 25
z i C. 
10 35
13 26
z i D. 
10 14
13 25
z i 
Câu 26. Tìm số phức z thỏa mãn 1 1 2 3 2 0i z i i 
A. 4 3z i B. 
3 5
2 2
z i C. 
5 3
2 2
z i D. 4 3z i 
Câu 27. Tìm số phức z thỏa mãn 2 4 ... 12 0z z . Tổng 
z
5( )
2
1
z i
i
z
21 z z 
TRƯỜNG THPT XUÂN ĐỈNH 
5 
1 2 3 4T z z z z bằng 
A. 4.T B. 2 3.T C. 4 2 3.T D. 2 2 3.T 
Câu 31. Cho số phức z thỏa mãn | 1| 2z . Biết rằng tập hợp điểm biểu diễn các số phức 
 1 3 2w i z là một đường tròn. Tính bán kính r của đường tròn đó 
A. 16r B. 4r C. 25r D. 9r 
Câu 32. Tập hợp các điểm trong mặt phẳng biểu diễn cho số phức z thoả mãn 2 2z i z z i là 
A. Một đường thẳng B. Một đường tròn C. Một parabol D. Một elip. 
Câu 33. Cho số phức z thỏa mãn điều kiện 
1
2 5
1
i
i z i
i
. Môđun của số phức 21 2w z z 
là 
A. 10. B. 10 . C. 100. D. 100 . 
Câu 34. Tìm phần thực, phần ảo của số phức z thỏa 39791 (1 )
2
z
i i i
 ? 
A. Phần thực là 19902 và phần ảo là 2 . B. Phần thực là 19902 và phần ảo là 2 . 
C. Phần thực là 19892 và phần ảo là 1. D. Phần thực là 19892 và phần ảo là 1. 
Câu 35. Phương trình 22 0 ,i z az b a b có hai nghiệm là 3 i và 1 2i . Khi đó ?a 
A. 9 2i B. 15 5i C. 9 2i 
D. 15 5i 
Câu 36. Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện phần thực 
của z bằng -2 là 
A. 2x . B. 2y . C. 2y x D. 2y x 
Câu 37. Trong mặt phẳng phức , số phức z thỏa điều kiện nào thì có điểm biểu diễn số phức 
thuộc phần tô màu như hình vẽ 
A. 1 2z và phần ảo dương. 
B. 1 2z và phần ảo âm. 
C. 1 2z và phàn ảo dương. 
D. 1 2z và phần ảo âm. 
Câu 38. Cho hai số thực ,x y thỏa mãn 
 2 1 1 2 2 2x y i i yi x . Giá trị của 2 3x xy y bằng 
A. 1 . B. 1. C. 2 . D. 3 . 
Câu 39. Số phức z thỏa mãn: 2 3 1 9z i z i là 
A. 2 i . B. 2 i . C. 3 i . 
D. 2 i 
Câu 40. Tìm số thực ,x y để số phức 2 51 9 4 10z y xi và 
2 11
2 8 20z y i là liên hợp của nhau? 
A. 2; 2x y . B. 2; 2x y . C. 2; 2x y . D. 2; 2x y . 
Câu 41. Cho số phức 1 1 2z i và 2 1 2z i . Khẳng định nào sau đây là khẳng định đúng? 
A. 1 2 0z z . B. 
1
2
1
z
z
 . C. 1 2. 3 4z z i . D. 1 2z z . 
Câu 42. Cho số phức 1 2z i . Khẳng định nào sau đây là khẳng định đúng? 
A. 1
2
z
z
z
 . B. 1 1 2z i C. 
1. 0z z . D. 1
1 2
5 5
z i 
 . 
Oxy
TRƯỜNG THPT XUÂN ĐỈNH 
6 
Câu 43. Trong R , phương trình 2 4 z z i có nghiệm là 
A. 3 4 z i B. 2 4 z i C. 4 4 z i D. 5 4 z i 
Câu 44. Xác định tập hợp các điểm M trong mặt phẳng phức biểu diễn các số phức z thỏa mãn điều 
kiện: | 1 | 1z i . 
A. Đường tròn tâm I(-1;-1), bán kính R = 1. 
B. Hình tròn tâm I(1;-1), bán kính R = 1. 
C. Hình tròn tâm I(-1;-1), bán kính R = 1 (kể cả những điểm nằm trên đường tròn). 
D. Đường tròn tâm I(1;-1), bán kính R = 1. 
Câu 45. Điểm biểu diễn số thuần ảo nằm ở đâu trên mặt phẳng tọa độ? 
A. Trục Ox B. Trục Oy 
C. Gốc tọa độ D. Phân giác của góc phần tư thứ I, III. 
Câu 46. Cho các số phức 1 2, ,z z z . Mệnh đề nào sau đây là mệnh đề sai 
A. 
1 2 1 2
z =z z = z 
B. z = 0 z = 0 
C. Tập hợp điểm biểu diễn các số phức z thỏa mãn z 1 là đường tròn tâm O, bán kính R = 1 
D. Hai số phức bằng nhau khi và chỉ khi phần thực và phần ảo tương ứng bằng nhau 
Câu 47. Cho hai số phức . Giá trị của biểu thức là 
A. B. C. D. 
Câu 48. Cho số phức z thỏa 1 2z i z i . Giá trị nhỏ nhất của z là 
A.
1
2
 B. 1 C. 2 D.
1
4
Câu 49. Có bao nhiêu số phức z thỏa mãn z + z = 2017 
A. 0 B. 1 C. 2 D. Vô số 
Câu 50. Cho số phức z i 3 4 . Khi đó môđun của z 1 là 
A. 
1
5
 B.
1
5
 C. 
1
4
 D. 
1
3
Câu 51. Điểm biểu diễn số phức 
( i)( i)
z
i
2 3 4
3 2
 có tọa độ là 
A. (1;-4) B. (-1;-4) C. (1;4) D. (-1;4) 
Câu 52. Cho số phức z = a + bi. Khi đó số 1 z z
2i
 là 
A. Một số thực B. 0 C. Một số thuần ảo D. i 
Câu 53. Cho số phức z thỏa mãn: ( i)z ( i) i. 23 2 2 4 Hiệu phần thực và phần ảo của số phức z 
là 
A. 1 B. 0 C. 4 D. 6 
Câu 54. Cho hai số phức z = a + bi và z’ = a’ + b’i. Số phức 
z
z '
 có phần ảo là 
A. 
2 2
aa ' bb '
a b
 B. 
2 2
aa ' bb '
a ' b '
 C. 
2 2
aa ' bb '
a b
 D. 
2 2
2bb'
a ' b ' 
Câu 55. Thu gọn số phức z = 
3 2i 1 i
1 i 3 2i
 ta được 
1 23 , 2z i z i 1 1 2z z z 
0 10 10 100
TRƯỜNG THPT XUÂN ĐỈNH 
7 
A. 
21 61
i
26 26
 B. 
23 63
i
26 26
 C. 
15 55
i
26 26
 D. 
2 6
i
13 13
Câu 56. Nghiệm của phương trình 4 7 5 2 6i z i iz là 
A. i 
18 13
7 7
 B. i 
18 13
17 17
 C. i
18 13
7 17
 D. i 
18 13
17 17
Câu 57. Gọi z
1
 và z
2
lần lượt là nghiệm của phương trình: z z 2 2 5 0 . Tính z z 
1 2
 
A. 2 5 B. 10 C. 3 D. 6 
Câu 58. Gọi D là tập hợp các số phức z thỏa mãn 1
z i
z i
. Khi đó D là 
A. Trục hoành. B. Trục tung. 
C. Đường phân giác y = x. D. Đường phân giác y = -x. 
Câu 59. Gọi D là tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z sao cho 
1
z i 
 là số 
thuần ảo. Lựa chọn phương án đúng ? 
A. D là trục tung. B. D là trục hoành. 
C. D là đường phân giác thứ nhất y = x D. D là trục tung bỏ đi điểm I(0; 1). 
Câu 60. Xét các số phức z thỏa mãn 1 2 z z i . GTNN của biểu thức 1 2 11 2 P i z i bằng 
 A. 10
2
 B. 
5
2
 C. 
5
2
 D. 
2
5
II. HÌNH HỌC 
Câu 61. Cho mặt cầu 2 2 2: 2 4 2 0S x y z x y z . Tâm và bán kính mặt cầu S là 
A. 1;2;1 , 6I R B. 1; 2; 1 , 6I R 
C. 1; 2; 1 , 6I R D. 1;2;1 , 6I R 
Câu 62. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;-1) và đi qua điểm 
A(2;1;2). Mặt phẳng nào sau tiếp xúc với (S) tại A ? 
A. x + y - 3z - 8 = 0. B. x - y - 3z + 3 = 0. C. x + y + 3z - 9 = 0. D. x + y - 3z + 3 = 
0. 
Câu 63. Trong không gian Oxyz, mặt cầu có tâm thuộc Ox và tiếp xúc với hai mặt phẳng 
 : 2 5 0,P x y z : 2 3 0Q x y z có phương trình là 
A. 
2 2 2 14
5
 x y z . B. 
2 2 2 14
6
 x y z . 
C. 
2 2 2 14
7
 x y z . D. 
2 2 2 14
8
 x y z . 
Câu 64. Trong không gian Oxyz, mặt cầu ( )S đi qua 0;2;0A , 2;3;1B , 0;3;1C và có tâm nằm 
trên Oxz . Phương trình mặt cầu ( )S là 
A. 
2 22 6 4 9x y z B. 
22 23 16x y z 
C. 
2 22 7 5 26x y z D. 
2 221 3 14x y z 
Câu 65. Trong không gian với hệ tọa độ Oxyz, cho hai điểm 2;0; 1 , 1; 1;3P Q và mặt phẳng 
 : 3 2 5 0R x y z . Viết phương trình mặt phẳng đi qua ,P Q và vuông góc với mp R 
A. 7 11 3 0x y z B. 7 11 1 0x y z 
C. 7 11 15 0x y z D. 2 0x y z 
TRƯỜNG THPT XUÂN ĐỈNH 
8 
Câu 66. Trong không gian tọa độ ,Oxyz cho đường thẳng 
1 3
:
3 4 1
x y z
d và điểm 1;2;3 .A 
Phương trình mặt phẳng đi qua A và chứa d là 
A. 23 17 14 0.x y z B. 23 17 14 0.x y z 
C. 23 17 60 0.x y z D. 23 17 14 0.x y z 
Câu 67. Trong không gian tọa độ ,Oxyz cho 2 đường thẳng cắt nhau 
1
1 2
: , ' : 2
1 2 3
2 3
x t
x y z
d d y t
z t
. Viết phương trình mặt phẳng chứa d và d’. 
A. 3 2 4 0.y z B. 3 2 4 0.y z 
C. 3 2 4 0.y z D. 3 2 4 0.y z 
Câu 68. Trong không gian ,Oxyz cho 2 đường thẳng song song 
1
1 2
: , ' : 2
1 1 2
1 2
x t
x y z
d d y t
z t
. Viết phương trình mặt phẳng chứa d và d’. 
A. 9 4 7 0.x y z B. 9 4 7 0.x y z 
C. 9 4 7 0.x y z D. 9 4 7 0.x y z 
Câu 69. Trong không gian với hệ tọa độ Oxyz cho 1; 2;1M . Viết phương trình mặt phẳng (P) qua 
M cắt trục Ox, Oy, Oz lần lượt tại A, B, C sao cho 
2 2 2
1 1 1
OA OB OC
 đạt giá trị nhỏ nhất. 
A. : 2 3 8 0P x y z B. : 4 0P x y z 
C. : 2 6 0P x y z D. : 11 2 1
x y z
P 
Câu 70. Trong k/gian Oxyz cho đường thẳng 1 2
1
1 2
: 2 ; :
1 1 3
1 3
x t
x y z
d y t d
z t
. Khi đó 1d và 2d 
A. Cắt và vuông góc B. Cắt nhưng không vuông góc 
C. Song song D. Chéo nhau 
Câu 71. Trong không gian Oxyz cho A(3;2;0), đường thẳng 
x 1 y 3 z 2
d :
1 2 2
 . Khoảng cách từ 
điểm A đến đường thẳng d là 
A. 2 B. 3 C. 4 D. 5 
Câu 72. Trong không gian Oxyz gọi d là phương trình đường thẳng qua 1; 2;0A và có một véctơ 
chỉ phương là 1;2; 3u 
. Khẳng định nào dưới đây là sai? 
A. 
1
: 2 2
3
x t
d y t
z t
 B. : 4 2
3 3
x t
d y t
z t
 C. 
1
: 2 2
3
x t
d y t
z t
 D. : 4 2
1 3
x t
d y t
z t
Câu 73. Trong không gian Oxyz gọi d là phương trình đường thẳng qua 1; 2;0A và 2;0;1B . 
Khẳng định nào sau đây là đúng? 
TRƯỜNG THPT XUÂN ĐỈNH 
9 
A. 
1
: 2 2
1
x t
d y t
z t
 B. 
2
: 2
1
x t
d y t
z t
C. 
2 1
:
1 2 1
x y z
d
 D. 
3 2 1
:
1 2 1
x y z
d
Câu 74. Trong không gian Oxyz cho hai đường thẳng 
1
: 2
2
x t
d y t
z t
; 
1 2
:
2 3 1
x y z 
 và gọi là 
góc giữa d và . Khi đó cos có giá trị bằng 
A. 5 13
21
 B. 
5 14
21
 C. 
5 15
21
 D. 5 17
21
Câu 75. Trong không gian Oxyz cho đường thẳng
1
: 2
2
x t
d y t
z t
mặt phẳng : 2 3 1 0P x y z . 
Hình chiếu của đường thẳng (d) trên mặt phẳng (P) cóa phương trình là 
A. 
x t
y t
z t
3
1
2
5
9
2
 B. 
x t
y t
z t
3
1
5 9
 C. 
x t
y t
z t
3
1
2
5
9
2
 D. 
x t
y t
z t
3
1
5 9
Câu 76. Phương trình đường thẳngtrong không gian Oxyz đi qua điểm 1; 2;1A và song song với 
đường thẳng 
1
:
2 1 1
x y z
d
 có phương trình là 
A. 
1 2 1
2 1 1
x y z 
 B. 
1 2 1
2 1 1
x y z 
C. 
3 1
2 1 1
x y z 
 D. Đáp án khác 
Câu 77. Trong không gian với hệ tọa độ Oxyz, hình chiếu vuông góc của điểm 2; 1;3P trên 
đường thẳng 
3
7 5
2 2
x t
y t
z t
 là điểm có tọa độ nào sau đây? 
A.(-3; 2; 4) B. (-3; -2 ;-4) C. (3;-2;4) D. (3;-2;-4 ) 
Câu 78. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng 
13 1
:
2 1 2
yx z
d
 và 
điểm M(1;2;-3). Mặt cầu tâm M, tiếp xúc với đường thẳng d có bán kính R bằng bao nhiêu? 
A. 2R B. 2 5R C. 2 2R D. R = 4. 
Câu 79. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng và 
. Góc giữa hai đường thẳng trên là 
A. B. C. D. 
1 2
1 1 1
x y z
2 3 1
2 2 4
x y z
30 45 60 90
TRƯỜNG THPT XUÂN ĐỈNH 
10 
Câu 80. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng qua 1;0; 1A và có véc tơ chỉ 
phương 2; 4; 6u 
. Phương trình tham số của đường thẳng là 
A. 
1 2
: 4
1 6
x t
d y t
z t
 B. 
2
: 4
6
x t
d y
z t
 C. 
1
: 2
1 3
x t
d y t
z t
 D. 
1
: 2
1 3
x t
d y t
z t
Câu 81. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng và 
. Vị trí tương đối của và là 
A. cắt B. C. và trùng nhau D. và chéo nhau 
Câu 82. Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) song song với 2 đường thẳng 
2
3 2
1
x t
y t
z t
 và 
2 1
2 3 4
x y z 
. Mặt phẳng (P) có 1 véc tơ pháp tuyến là 
A. (-5; 6;-7) B. (5; -6 ;7) C. (-5 ; -6 ; 7) D. (-5 ;6 ;7) 
Câu 83. Mặt cầu S tâm 1;2; 3 I và tiếp xúc với : 2 2 1 0 P x y z có phương trình là 
A. 
2 2 2 4
1 2 3 .
9
 x y z B. 
2 2 2 4
1 2 3 .
9
 x y z 
C. 
2 2 2 4
1 2 3 .
3
 x y z D. 
2 2 2 16
1 2 3 .
3
 x y z 
Câu 84. Trong không gian với hệ trục tọa độ Oxyz , mặt phẳng đi qua 0; 2;3M , song song 
với đường thẳng 
2 1
:
2 3
x y
d z
 và vuông góc với mặt phẳng : 0x y z có pt là 
A. 2 3 5 9 0x y z . B. 2 3 5 9 0x y z . 
C. 2 3 5 9 0x y z . D. 2 3 5 9 0x y z . 
Câu 85. Trong không gian Oxyz , hai đường thẳng 
1 2 4
:
2 1 3
x y z
d
và 
1
' :
2 3
x t
d y t
z t
 có vị trí 
tương đối là 
A. trùng nhau. B. song song. C. chéo nhau. D. cắt nhau. 
Câu 86. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng : 2 2 0x y z m và điểm
 1;1;1A . Khi đó m nhận giá trị nào sau đây để khoảng cách từ điểm A đến mặt phẳng bằng 1? 
A. 2. B. 8. C. 2 hoặc 8 . D. 3. 
Câu 87. Trong không gian với hệ tọa độ ,Oxyz phương trình nào sau đây là phương trình chính tắc 
của đường thẳng đi qua hai điểm 1; 2;5A và 3;1;1B ? 
A.
1 2 5
.
2 3 4
x y z 
 B. 
3 1 1
.
1 2 5
x y z 
C.
1 2 5
.
2 3 4
x y z 
 D. 
1 2 5
.
3 1 1
x y z 
1
1 1
1
2 4
: 1 3
1 5
x t
d y t
z t
2
2 2
2
1 7
: 3 5
3
x t
d y t
z t
1d 2d
1d 2d 1 2d d 1d 2d 2d 1d
TRƯỜNG THPT XUÂN ĐỈNH 
11 
Câu 88. Trong không gian với hệ tọa độ ,Oxyz phương trình đường thẳng đi qua điểm 
 2;1; 5 ,M đồng thời vuông góc với hai vectơ 1;0;1a 
và 4;1; 1b 
 là 
A.
2 1 5
.
1 5 1
x y z 
 B. 
2 1 5
.
1 5 1
x y z 
C.
2 1 5
.
1 5 1
x y z 
 D. 
1 5 1
.
2 1 5
x y z 
Câu 89. Trong không gian với hệ tọa độ ,Oxyz cho hai đường thẳng 1
2 1 1
:
1 3 2
x y z
d
 và 
2
1 3
: 2
1
x t
d y t
z t
. Phương trình đường thẳng nằm trong : 2 3 2 0x y z và cắt hai đường thẳng 
1 2, d d là 
A.
3 2 1
.
5 1 1
x y z 
 B. 
3 2 1
.
5 1 1
x y z 
C.
3 2 1
.
5 1 1
x y z 
 D. 
8 3
.
1 3 4
x y z 
Câu 90. Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng 
1
1
: 2
2
x t
d y t
z t
và 
2
2
: 1 2
2
x t
d y t
z m t
. 
Để hai đường thẳng hợp với nhau một góc bằng 060 thì giá trị của m bằng 
A. 1m B. 1m C. 
1
2
m D. 
1
2
m 
Câu 91. Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình chính tắc 
của đường thẳng d:
1 2
3
2
x t
y t
z t
 ? 
A. 
1 2
2 3 1
x y z 
 . B. 
1 2
2 3 2
x y z 
. C. 
1 2
1 3 2
x y z 
. D. 
1 2
2 3 1
x y z 
 . 
Câu 92. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x – 2y –z +1 = 0 và đường thẳng 
1 2 1
:
2 1 2
x y z 
 . Tính khoảng cách d giữa đường thẳng và (P) ? 
A. 
1
3
d . B. 
5
3
d . C. 
2
3
d . D. 2d . 
Câu 93. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng 1
3 6 1
:
2 2 1
x y z
d
 và 
 2 :
2
x t
d y t t
z
 . Đường thẳng đi qua điểm (0;1;1)A , vuông góc với 1d và cắt 2d có PT là 
A. 
1 1
1 3 4
x y z 
 B. 
1 1
1 3 4
x y z 
 C. 
1 1
1 3 4
x y z 
 D. 
1 1
1 3 4
x y z 
TRƯỜNG THPT XUÂN ĐỈNH 
12 
Câu 94. Trong không gian với hệ tọa độ ,Oxyz cho hai đường thẳng 1
1
: 0
5
x t
d y
z t
 và 2
0
: 4 2 .
5 3
x
d y t
z t
Phương trình đường vuông góc chung của 1d và 2d là 
A. 
4 2
.
2 3 2
x y z 
 B. 
4
3 .
2
x t
y t
z t
 C. 
4 2
.
2 3 2
x y z 
 D. 
4 2
.
2 3 2
x y z 
Câu 95. Trong không gian Oxyz, cho hai đường thẳng 1 2, d d có phương trình lần lượt là 
5
3
2 2
x t
y t
z t
và 
1 3 '
1 '
5 '
x t
y t
z mt
. Tìm tham số thực m để hai đường thẳng 1d và 2d cắt nhau. 
A. 1m B. 1m C. 2m D. 2m 
Câu 96. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: 
1 2
1 2 3
x y z 
 và mặt phẳng 
(P): x y z 2 2 3 0 . Tọa độ điểm M thuộc đường thẳng (d) và cách mp (P) một đoạn bằng 2 là 
A. ; ;M 1 3 5 B. ; ;M 2 3 1 C. ; ;M 2 5 8 D. ; ;M 1 5 7 
--------------------------------------HẾT---------------------------------- 

File đính kèm:

  • pdfde_cuong_on_tap_hoc_ky_ii_mon_toan_khoi_12_nam_hoc_2020_2021.pdf