Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân

▪ Tập trung Định lý giới hạn trung tâm

▪ Bất đẳng thức Trebusep (Chebyshev)

▪ Định lý Trebusep

▪ Định lý Bernoulli

▪ Định lý giới hạn trung tâm

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân trang 1

Trang 1

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân trang 2

Trang 2

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân trang 3

Trang 3

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân trang 4

Trang 4

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân trang 5

Trang 5

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân trang 6

Trang 6

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân trang 7

Trang 7

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân trang 8

Trang 8

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân trang 9

Trang 9

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 41 trang Danh Thịnh 09/01/2024 6440
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân

Bài giảng Xác suất thống kê - Chương 5: Các định lý giới hạn - Trường Đại học Kinh tế quốc dân
Chương 5. CÁC ĐỊNH LÝ GIỚI HẠN
▪ Tập trung Định lý giới hạn trung tâm
▪ Bất đẳng thức Trebusep (Chebyshev)
▪ Định lý Trebusep
▪ Định lý Bernoulli
▪ Định lý giới hạn trung tâm
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 127
Chương 5. 
Định lý giới hạn trung tâm
▪ Xét X1, X2,, Xn là các BNN độc lập có cùng quy luật
phân phối xác suất, kỳ vọng và phương sai hữu hạn
▪ Đặt và
▪ Thì U sẽ hội tụ về quy luật N(0, 1) khi n 
▪ Trong ứng dụng, n ≥ 30 được coi là đủ lớn để áp
dụng quy luật Chuẩn (dù biến ngẫu nhiên gốc không
phân phối chuẩn)
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 128
 
1
n
i
i
Y X
( )
( )
Y E Y
U
V Y
Chương 5. Các định lý giới hạn
Phần hai. THỐNG KÊ TOÁN
▪ Nghiên cứu các hiện tượng có tính chất số lớn
▪ Dùng thông tin đã biết từ một mẫu để suy đoán về
toàn bộ tổng thể, dựa trên cơ sở quy luật phân phối
xác suất
▪ NỘI DUNG:
• Chương 6. Cơ sở lý thuyết mẫu
• Chương 7. Ước lượng tham số
• Chương 8. Kiểm định giả thuyết thống kê
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 129
Chương 6. CƠ SỞ LÝ THUYẾT MẪU
▪ Giới thiệu phương pháp nghiên cứu phổ biến trong
thực tế là phương pháp lấy mẫu và phân tích trên
mẫu để suy đoán về thông tin của toàn bộ tổng thể
▪ Các đại lượng tính toán trên mẫu là các con số tổng
hợp quan trọng sử dụng trong phân tích, so sánh, 
đánh giá các vấn đề kinh tế-xã hội, kinh doanh
▪ Kết hợp sử dụng phần mềm chuyên dụng như Excel, 
SPSS, STATA, R
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 130
Chương 6. 
NỘI DUNG CHƯƠNG 6
▪ 6.1. Khái niệm phương pháp mẫu
▪ 6.2. Tổng thể nghiên cứu
▪ 6.3. Mẫu ngẫu nhiên
▪ 6.4. Thống kê
▪ 6.5. Mẫu hai chiều
▪ 6.6. Quy luật phân phối xác suất của một số thống kê
▪ 6.7. Suy diễn về mẫu
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 131
Chương 6. Cơ sở lý thuyết mẫu
6.1. KHÁI NIỆM PHƯƠNG PHÁP MẪU
▪ Nghiên cứu một vấn đề thông qua các dấu hiệu
▪ Dấu hiệu có thể định tính hoặc định lượng
▪ Nghiên cứu toàn bộ: Tổng thể, gặp nhiều khó khăn:
• Chi phí lớn, có thể không khả thi
• Sai sót khi thu thập, có thể phá hủy tập hợp
▪ Do đó nghiên cứu một số phần tử đại diện: Mẫu
▪ Đại lượng tính trong tổng thể gọi là Tham số, tính
trong mẫu gọi là Thống kê.
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 132
Chương 6. Cơ sở lý thuyết mẫu 6.1. 
Biến trong thống kê
▪ Gồm Định tính và Định lượng
▪ Biến định tính (qualitative) gồm hai loại:
• Biến định danh (nominal): tên, địa danh, màu
• Biến thứ bậc (ordinal): xếp hạng, học vấn, đánh
giá, cỡ
▪ Biến định lượng (quantitative), có thể phân chia 
thành: rời rạc và liên tục; hoặc chia thành biến
khoảng và tỉ lệ.
▪ Thường xếp 3 loại: định danh, thứ bậc, định lượng
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 133
Chương 6. Cơ sở lý thuyết mẫu 6.1. Khái niệm phương pháp mẫu
6.2. TỔNG THỂ NGHIÊN CỨU
▪ Toàn bộ tập hợp các phần tử đồng nhất theo một
dấu hiệu nghiên cứu nào đó được gọi là tổng thể
(population)
▪ Kích thước tổng thể (population size): N
▪ Dấu hiệu lượng hóa được: X
▪ X = {x1, x2,  , xN }
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 134
Chương 6. Cơ sở lý thuyết mẫu 6.2. 
Mô tả tổng thể
▪ Nếu X chỉ gồm k giá trị khác nhau: x1, x2,, xk
▪ Số lượng tương ứng là N1, N2,, Nk
▪ Ni gọi là tần số tổng thể của xi
▪ Đặt pi = Ni / N gọi là tần suất tổng thể
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 135
Giá trị x1 x2  xk
Tần số N1 N2  Nk
Tần suất p1 p2  pk
  1
0 i
k
ii
N N
N N
  1
0 1
1
i
k
ii
p
p
Chương 6. Cơ sở lý thuyết mẫu 6.2. Tổng thể nghiên cứu
Tham số đặc trưng của tổng thể
▪ Trung bình tổng thể (population mean): m
• Chứng minh được: m = E(X)
▪ Phương sai tổng thể (population variance): σ2
• Chứng minh được: σ2 = V(X)
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 136
1
1
 
N
i
i
m x
N
( )2 2
1
1
σ
 
N
i
i
x m
N
Chương 6. Cơ sở lý thuyết mẫu 6.2. Tổng thể nghiên cứu
Tham số đặc trưng của tổng thể
▪ Độ lệch chuẩn tổng thể: σ
▪ Tần suất tổng thể (population proportion): p
• Số phần tử chứa dấu hiệu (hay biến cố) A là MA
• Dễ thấy: p = P(A)
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 137
σ σ 2
 A
M
p
N
Chương 6. Cơ sở lý thuyết mẫu 6.2. Tổng thể nghiên cứu
6.3. MẪU NGẪU NHIÊN
▪ Nghiên cứu qua mẫu (sample)
▪ Mẫu ngẫu nhiên kích thước n là tập hợp của n biến
ngẫu nhiên độc lập X1, X2, , Xn được thành lập từ
biến ngẫu nhiên trong tổng thể và có cùng quy luật
phân phối xác suất với X.
▪ Ký hiệu: W = (X1, X2, , Xn)
▪ E(Xi) = E(X) = m
▪ V(Xi) = V(X) = σ
2 i = 1, 2,, n
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 138
Chương 6. Cơ sở lý thuyết mẫu 6.3. 
Các phương pháp lấy mẫu
▪ Lấy mẫu giản đơn (simple sampling)
▪ Lấy mẫu hệ thống (systematic sampling)
▪ Lấy mẫu chùm (quote sampling)
▪ Lấy mẫu phân tổ (cluster sampling)
▪ Lấy mẫu nhiều cấp (stratiffed sampling)
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 139
Chương 6. Cơ sở lý thuyết mẫu 6.3. Mẫu ngẫu nhiên
Mẫu cụ thể
▪ Gồm n quan sát (n con số): w = (x1, x2,, xn)
▪ Nếu chỉ gồm k giá trị khác nhau: x1, x2,, xk với số
lượng tương ứng: n1, n2,, nk
▪ ni là tần số mẫu của xi (frequency)
▪ Đặt fi = ni / n : tần suất mẫu (sample proportion)
LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - NEU – www.mfe.edu.vn 140
Giá trị x1 x2  xk
Tần số n1 n2  nk
Tần suất f1 f2  fk
  1
k
ii
n n
  1 1
k
ii
f
Chương 6. Cơ sở lý thuyết mẫu 6.3. Mẫu ngẫu nhiên
Mô tả mẫu cụ thể
▪ Có thể liệt kê giá trị, dùng bảng tần số, tần suất
▪ Dùng đồ thị: đồ thị tròn, đồ thị cột, đồ thị phân phối
giá trị, đồ thị radar,
▪ Nếu s

File đính kèm:

  • pdfbai_giang_xac_suat_thong_ke_chuong_5_cac_dinh_ly_gioi_han_tr.pdf