Bài giảng Đồ họa và hiện thực ảo - Lesson 7: Đường cong trong không gian 3D CURVE
z Why use curves? Quỹ đạo chuyển động của 1 điểm trong không gian
z Điểm biểu diễn Đường cong -curve represents points:
– là phương pháp được sử dụng trong khoa học vật lý và kỹ nghệ nói chung.
– Các điểm dữ liệu được đo chính xác trên các thực thể sẽ chính đối tượng cơ sở. Đường cong đi qua các điểm dữ liệu hiển thị hỗ trợ cho việc nhận ra xu hướng và ý nghĩa cả các điểm dữ liệu.
– Các kỹ thuật phức tạp “vd bình phương sai số” được dùng đưa đường cong hợp với 1 dạng toán học cơ bản.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Bạn đang xem tài liệu "Bài giảng Đồ họa và hiện thực ảo - Lesson 7: Đường cong trong không gian 3D CURVE", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Đồ họa và hiện thực ảo - Lesson 7: Đường cong trong không gian 3D CURVE
CNTT-DHBK Hanoi hunglt@it-hut.edu.vn 1 Khoa CNTT DHBK Hanoi1 Đường cong trong không gian 3D CURVE Khoa CNTT DHBK Hanoi2 Đường cong - Curve z Why use curves? Quỹ đạo chuyển động của 1 điểm trong không gian z Điểm biểu diễn Đường cong -curve represents points: – là phương pháp được sử dụng trong khoa học vật lý và kỹ nghệ nói chung. – Các điểm dữ liệu được đo chính xác trên các thực thể sẽ chính đối tượng cơ sở. Đường cong đi qua các điểm dữ liệu hiển thị hỗ trợ cho việc nhận ra xu hướng và ý nghĩa cả các điểm dữ liệu. – Các kỹ thuật phức tạp “vd bình phương sai số” được dùng đưa đường cong hợp với 1 dạng toán học cơ bản. z Biểu diễn Điểm và kiểm soát đường cong -Points represent-and control-the curve. – đường cong là các đối tượng cơ bản thường là kết quả của tiến trình thiết kế và các điểm đóng vai trò là công cụ để kiểm soát và và mô hình hoá đường cong. – Cách tiếp cận này là cơ sở của lĩnh vực Computer Aided Geometric Design (CAGD). Khoa CNTT DHBK Hanoi3 Phân loại z Trên cơ sở ràng buộc giữa điểm và đường trong cả ứng dụng khoa học và thiết kế ta co thể phân làm 2 loại: z Nội suy-Interpolation - đường cong đi qua các điểm, trong ứng dụng khoa học các yêu cầu về ràng buộc sử dụng đa thức hay các hàm bậc cao tuy nhiên kết quả thường có những hiệu ứng phụ như sai số phóng đại hay độ nhấp nhô của đường cong do đa thức bậc cao tạo nên. z Trong thiết kế nôi suy là cần thiết với các đối tượng nhưng không phù hợp với các đối tượng có hình dáng bất kỳ "free form“. z Xấp xỉ-Approximation - đường cong không cần đi qua các điểm,với các ứng dụng khoa học ta gọi là trung bình dữ liệu- data averaging hay trong thiết kế điểu khiển đường cong. Khoa CNTT DHBK Hanoi4 Polynomial Parametric Curves z What degree should we use to represent a curve? – We choose the third degree: z Cubic polynomials – Higher degrees: z Require more computation z Have extra “wiggles” z Provide more flexibility than is required. z Are often used to model cars and aeroplanes Khoa CNTT DHBK Hanoi5 Tính chất cả đường cong bậc 3 z Tham biến – parametric sử dụng tham biến ngoài để biểu diễn cho các tham biến trong z Độ mượt - smooth. Với đường cong Hermite and Bézier tính liên tục continuity của đường cong hay đạo hàm bậc 1-first derivative tại các điểm kiểm soát-control point. Với B-splines tính liên tục trên đạo hàm bậc 2 second derivative hay độ cong được đảm bảo curvature. z Độ biến đổi -"variation diminishing." đường cong ít bị khuếch đại sai số bởi các điểm kiểm soát hay tính nhấp nhô của đường cong hạn chế -oscillate. z Ví dụ Bézier curve, for instance, lies within the convex hull (polygon envelope) of the set of control points. z Điêm kiểm soát cục bộ-local control. đường cong bị ảnh hưởng mạnh nhất với chính các điểm kiểm soát gần chúng nhất. Khoa CNTT DHBK Hanoi6 Đường cong đa thức bậc ba z Phải đảm bảo là đường cong không gian với 3 trục toạ độ x, y, z z tránh được những tính toán phức tạp và những phần nhấp nhô ngoài ý muốn xuất hiện ở những đường đa thức bậc cao z Why cubic? – lower-degree polynomials give too little flexibility in controlling the shape of the curve – higher-degree polynomials can introduce unwanted wiggles and require more computation – lowest degree that allows specification of endpoints and their derivatives – lowest degree that is not planar in 3D CNTT-DHBK Hanoi hunglt@it-hut.edu.vn 2 Khoa CNTT DHBK Hanoi7 z Kinds of continuity: – G0: two curve segments join together – G1: directions of tangents are equal at the joint – C1: directions and magnitudes of tangents are equal at the joint – Cn: directions and magnitudes of n-th derivative are equal at the joint Khoa CNTT DHBK Hanoi8 P0 P1 p2 p3 P0 P'0 P1 P'1 Đường cong bậc 3 z Theo Lagrange: z x = a1 + b1u + c1u2 + d1u3 z y = a2 + b2u + c2u2 + d2u3 z z = a3 + b3u + c3u2 + d3u3 z 3 phương trinh với 12 ẩn số z Với 3 điểm P0, P1, P2, P3 phương trình xác định Khoa CNTT DHBK Hanoi9 Đường cong Hermite z Phương pháp Hermite dựa trên cơ sở của cách biểu diễn Ferguson hay Coons năm 60 z đường bậc ba sẽ xác định bởi hai điểm đầu và cuối cùng với hai góc nghiêng tại hai điểm đó z p = p(u) = k0 + k1u + k2u2 + k3u3 z p(u) = ∑kiui i∈n z p’ = p(u) = k1 + 2k2u + 3k3u2 z p0 và p1 ta có hai độ dốc p0’ và p1’ với u = 0 và u = 1 tại hai điểm đầu cuối của đoạn [0,1]. z k1 + 2k2 + 3k3 = p1’ z k0 = p0 k1 = p1’ z k2 = 3(p1 – p0) - 2p0’ – p1’ z k3 = 2(p0-p1) + p0’ + p1’ Khoa CNTT DHBK Hanoi10 z Thay vào: z p = p(u) = p0(1-3u2+2u3) + p1(3u2-2u3) + p0’(u-2u2+u3) + p1’(-u2+u3) p = p(u) = [ 1 u u2 u3 ] ⎥⎥ ⎥⎥ ⎦ ⎤ ⎢⎢ ⎢⎢ ⎣ ⎡ ⎥⎥ ⎥⎥ ⎦ ⎤ ⎢⎢ ⎢⎢ ⎣ ⎡ −−− 1 0 1 0 1122 1233 0100 0001 ' ' . p p p p Khoa CNTT DHBK Hanoi11 Khoa CNTT DHBK Hanoi12 Đường cong Bezier z Sử dụng điểm và các vector kiểm soát được độ dốc của đường cong tại nhưng điểm mà nó đi qua.(Hermit) z không được thuận lợi cho việc thiết kế tương tác, không tiếp cận vào các độ dốc của đường cong bằng các giá trị số (Hermite). z Paul Bezier, RENAULT, 1970 đường và bề mặt UNISURF CNTT-DHBK Hanoi hunglt@it-hut.edu.vn 3 Khoa CNTT DHBK Hanoi13 z po, p3 tương đương với p0, p1 trên đường Hermite. diểm trung gian p1, p2 được xác định bằng 1/3 theo độ dài của vector tiếp tuyến tại điểm po và p3 z p0’ = 3(p1 – p0) z p3’ = 3(p3 – p2) z p = p(u) = p0(1-3u2+2u3) + p1(3u2-2u3) + p0’(u- 2u2+u3) + p1’(-u2 + u3) z p = p(u) = p0(1 - 3u + 3u2 - u3) + p1(3u-6u2+3u3) + p2(3u2 - 3u3) + p3u3 Khoa CNTT DHBK Hanoi14 p = p(u) = [ 1 u u2 u3 ] ⎥⎥ ⎥⎥ ⎦ ⎤ ⎢⎢ ⎢⎢ ⎣ ⎡ ⎥⎥ ⎥⎥ ⎦ ⎤ ⎢⎢ ⎢⎢ ⎣ ⎡ −− − − 3 2 1 0 1331 0363 0033 0001 p p p p Khoa CNTT DHBK Hanoi15 Ưu điểm z dễ dàng kiểm soát hi`nh dạng của đường cong hơn vector tiếp tuyến tại p0’ và p1’ của Hermite. z Nằm trong đa giác kiểm soát với số điểm trung gian tuỳ ý( số bậc tuỳ ý) z đi qua điểm đầu và điểm cuối của đa giác kiểm soát, tiếp xúc với cặp ha
File đính kèm:
- bai_giang_do_hoa_va_hien_thuc_ao_lesson_7_duong_cong_trong_k.pdf