Phân tích và đánh giá hiệu năng hoạt động của Cape

Để giảm thiểu khó khăn cho các lập trình viên khi phát triển các ứng dụng song song, các công cụ lập trình song song ở mức trừu tượng cao và dễ sử là một đòi hỏi bức thiết. MPI (Message Passing Interface) [1] và OpenMP [2] là hai công cụ trình được sử dụng rộng rãi để đáp ứng yêu cầu này. Các chương trình MPI có hiệu năng cao nhưng khó phát triển trong khi OpenMP rất mạnh và dễ sử dụng. Tuy nhiên nhược điểm lớn nhất của OpenMP là chỉ có thể chạy trên các kiến trúc sử dụng bộ nhớ chia sẻ.

Phân tích và đánh giá hiệu năng hoạt động của Cape trang 1

Trang 1

Phân tích và đánh giá hiệu năng hoạt động của Cape trang 2

Trang 2

Phân tích và đánh giá hiệu năng hoạt động của Cape trang 3

Trang 3

Phân tích và đánh giá hiệu năng hoạt động của Cape trang 4

Trang 4

Phân tích và đánh giá hiệu năng hoạt động của Cape trang 5

Trang 5

Phân tích và đánh giá hiệu năng hoạt động của Cape trang 6

Trang 6

Phân tích và đánh giá hiệu năng hoạt động của Cape trang 7

Trang 7

Phân tích và đánh giá hiệu năng hoạt động của Cape trang 8

Trang 8

Phân tích và đánh giá hiệu năng hoạt động của Cape trang 9

Trang 9

Phân tích và đánh giá hiệu năng hoạt động của Cape trang 10

Trang 10

pdf 10 trang Danh Thịnh 10/01/2024 3900
Bạn đang xem tài liệu "Phân tích và đánh giá hiệu năng hoạt động của Cape", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Phân tích và đánh giá hiệu năng hoạt động của Cape

Phân tích và đánh giá hiệu năng hoạt động của Cape
Kỷ yếu Hội nghị Quốc gia lần thứ VI về Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin (FAIR) 1 
Thừa Thiên Huế, ngày 20-21/06/2013 
PHÂN TÍCH VÀ ĐÁNH GIÁ HIỆU NĂNG HOẠT ĐỘNG CỦA CAPE 
Hà Viết Hải1, Trần Văn Long2 
1Trường Đại học Sư phạm, Đại học Huế, Việt Nam 
2Trường Cao đẳng Công nghiệp Huế, Việt Nam 
haviethai@gmail.com, tvlong@hueic.edu.vn 
TÓM TẮT— MPI (Message Passing Interface) và OpenMP là hai công cụ được sử dụng rộng rãi để phát triển các chương 
trình song song. Các chương trình MPI có ưu điểm là có hiệu năng cao nhưng khó phát triển trong khi OpenMP rất mạnh và dễ sử 
dụng. Tuy nhiên nhược điểm lớn nhất của OpenMP là chỉ có thể chạy trên các kiến trúc sử dụng bộ nhớ chia sẻ. CAPE 
(Checkpointing Aided Parallel Execution) là một hướng tiếp cận sử dụng kỹ thuật đánh dấu tiến trình (Checkpointing) để cài đặt 
OpenMP trên các kiến trúc sử dụng bộ nhớ phân tán. Bài báo này đi sâu vào việc phân tích và đánh giá hiệu năng hoạt năng hoạt 
động của CAPE thông qua việc so sánh mô hình hoạt động của nó với mô hình của MPI, từ đó đưa ra những nhận định cho việc sử 
dụng CAPE một cách hiệu quả. 
Từ khóa— CAPE, OpenMP, MPI, parallel computing, high performance computing, lập trình song song, tính toán hiệu 
năng cao. 
I. GIỚI THIỆU 
Để giảm thiểu khó khăn cho các lập trình viên khi phát triển các ứng dụng song song, các công cụ lập trình song 
song ở mức trừu tượng cao và dễ sử là một đòi hỏi bức thiết. MPI (Message Passing Interface) [1] và OpenMP [2] là 
hai công cụ trình được sử dụng rộng rãi để đáp ứng yêu cầu này. Các chương trình MPI có hiệu năng cao nhưng khó 
phát triển trong khi OpenMP rất mạnh và dễ sử dụng. Tuy nhiên nhược điểm lớn nhất của OpenMP là chỉ có thể chạy 
trên các kiến trúc sử dụng bộ nhớ chia sẻ. 
Đã có nhiều nỗ lực để cài đặt OpenMP trên các kiến trúc sử dụng bộ nhớ phân tán nhưng chưa có phương án 
nào thành công trên cả hai mặt là tương thích hoàn toàn với chuẩn OpenMP và có hiệu năng cao. Những phương án nổi 
bật nhất có thể kể đến là sử dụng SSI [3]; SCASH [4]; sử dụng mô hình RC [5]; biên dịch thành MPI [6][7]; sử dụng 
Global Array [8]; Cluster OpenMP [9]. Phương án sử dụng một ảnh chung hệ thống (Single System Image ˗ SSI) như 
một bộ nhớ chung cho các tiến trình trong hệ thống là hướng trực quan nhất để cài đặt OpenMP trên các kiến trúc phân 
tán. Do có bộ nhớ chung, các chương trình OpenMP có thể dễ dàng được biên dịch để chạy trên các tiến trình trên các 
máy tính khác nhau của hệ thống. Tuy nhiên, do việc truy cập bộ nhớ chung trên mạng và việc đồng bộ hóa các truy 
cập này tiêu tốn nhiều thời gian, tiếp cận này không thể cung cấp hiệu năng cao. Một thử nghiệm thực tế [10] đã cho 
thấy tốc độ xử lý của chương trình lại tỷ lệ nghịch với số tiến trình, thay vì tỷ lệ luận như mong đợi. Để giảm sự trả giá 
về thời gian do đặt toàn bộ không gia nhớ của các tiến trình lên trên một SSI, các phương án như SCASH chỉ ánh xạ 
các biến chia sẻ giữa các tiến trình lên phần bộ nhớ chung, còn tiến trình vẫn sử dụng bộ nhớ cục bộ. Một phương án 
khác theo hướng này là sử dụng mô hình bộ nhớ đồng bộ hóa trể (Relaxed Consistency Memory Model). Tuy nhiên, 
các phương án này đều gặp khó khăn trong việc tự động xác định các biến chia sẻ cũng như trong việc cài đặt một số 
cấu trúc bộ nhớ chia sẻ khác nên chúng đều không thể tương thích hoàn toàn với chuẩn OpenMP. Các phương án biên 
dịch OpenMP thành dạng MPI có ưu điểm về hiệu năng nhưng vẫn không thể cài đặt được tất cả các cấu trúc và chỉ thị 
của OpenMP. Ngay cả với Cluster OpenMP, một sản phẩm thương mãi của Intel cũng đòi hỏi phải sử dụng thêm các 
chỉ thị riêng của nó (không nằm trong chuẩn OpenMP) trong một số trường hợp và vì vậy, nó cũng chưa cung cấp được 
một cài đặt tương thích hoàn toàn với OpenMP. 
CAPE (Checkpointing Aide Parallel Execution) là một hướng tiếp cận khác để cài đặt OpenMP trên các kiến 
trúc sử dụng bộ nhớ phân tán. CAPE sử dụng kỹ thuật đánh dấu tiến trình (checkpointing) để phân phối công việc trong 
các khối chương trình song song đến các tiến trình khác nhau của hệ thống và để xử lý việc trao đổi dữ liệu chia sẻ một 
cách tự động. Hai phiên bản của CAPE [11][12] đã được phát triển và thử nghiệm đã chứng minh tính khả thi cũng như 
hiệu năng cao của CAPE. 
Bài báo này đi sâu vào việc phân tích và đánh giá hiệu năng hoạt năng hoạt động của CAPE thông qua việc so 
sánh mô hình hoạt động của nó với mô hình của MPI, từ đó đưa ra những nhận định cho việc sử dụng CAPE một cách 
hiệu quả. Lý do của việc so sánh và đánh giá này là khá rõ ràng: so sánh với hiệu năng của MPI tức là so sánh với giải 
pháp có hiệu năng cao nhất trên các kiến trúc sử dụng bộ nhớ phân tán. 
Phần còn lại của bài báo được tổ chức như sau: chương 2 trình bày một số vấn đề liên quan đến vấn đề nghiên 
cứu, bao gồm các giới thiệu sơ lược về MPI, OpenMP và kỹ thuật đánh dấu tiến trình. Chương tiếp theo là phần giới 
thiệu về CAPE dựa trên kỹ thuật đánh dấu tiến trình gia tăng rời rạc. Chương 4 là một so sánh lý thuyết về mô hình 
hoạt động của CAPE và MPI. Chương 5 nêu một kết quả thực nghiệm để kiểm chứng cho các phân tích ở chương 4. 
Chương cuối cùng nêu kết luận và một số định hướng nghiên cứu trong tương lai. 
II. CÁC VẤN ĐỀ LIÊN QUAN 
2.1 MPI 
2 PHÂN TÍCH VÀ ĐÁNH GIÁ HIỆU NĂNG HOẠT ĐỘNG CỦA CAPE 
MPI [1] là một giao diện lập trình (API) được phát triển từ khá lâu. MPI cung cấp một thư viện căn bản nhất cho 
việc tổ chức một chương trình song song theo kiểu đa tiến trình. Chúng bao gồm các câu lệnh để khởi tạo môi trường 
MPI, phân chia các xử lý vào các đoạn mã song song, mỗi phần chạy trên một tiến trình; các câu lệnh để trao đổi dữ 
liệu giữa các tiến trình; các câu lệnh đồng bộ hóa các tiến trình... Mô hình xử lý thường được dùng là một tiến trình 
chính (master) và nhiều tiến trình phụ (slave). Thông thường, tiến trình chính tại máy (hoặc CPU) nguyên thủy ban 
đầu, làm nhiệm vụ khởi tạo chương trình, phân chia công việc và nhận kết quả tính toán từ các t ... là cần cài đặt trình đánh dấu tiến trình (checkpointer) có hiệu năng cao, tức 
là ít tác động lên thời gian thực hiện mã ứng dụng của trình được chụp ảnh. Thứ hai là mã ứng dụng cần được phân 
chia sao cho giảm thiểu được kích thước ảnh chụp trên mỗi node, tức là giảm thiểu được vùng không gian nhớ được 
cập nhật trong tiến trình ứng dụng. 
V. KẾT QUẢ THỰC NGHIỆM 
Để kiểm chứng cho các nhận định trên, chúng tôi đã tiến hành thực nghiệm trên một bài toán nhân ma trận 
vuông, với kích thước thay đổi từ 3000x3000 đến 12000x12000. Các ma trận thuộc dạng bình thường với các phần tử 
mang giá trị khác 0. Chương trình được sử dụng gồm hai khối mã chính. Khối thứ nhất khởi tạo các ma trận và được 
thực hiện như nhau trên các node. Khối thứ hai gồm các vòng lặp for lồng nhau để thực hiện phép nhân ma trận. Đối 
với chương trình OpenMP và CAPE, vòng lặp for ngoài cùng được song song hóa bởi một pragma parallel for 
trong khi các bước lặp của nó được phân chia một cách tương ứng cho các node tính toán đối với chương trình MPI. 
Mã MPI được sử dụng ở đây đã được tối ưu hóa theo hướng giảm tối đa lượng dữ liệu trao đổi giữa các node. Hệ thống 
phần nền được sử dụng là một cluster các máy tính để bàn, mỗi máy trang bị CPU Intel®Core™2 Duo E8400 3GHz, 
RAM 2GB, chạy hệ điều hành Ubuntu 10.10, kết nối bằng mạng Ethernet tốc độ 100MB/s. Mỗi thử nghiệm được thực 
hiện ít nhất là 10 lần, với khoảng tin cậy tối thiểu là 90%. Các số liệu được đưa ra ở đây là trung bình cọng của 10 lần 
đo. 
Bảng 2 trình bày thời gian thực hiện của chương trình dưới dạng tuần tự và dưới dạng OpenMP trên máy cục bộ 
với 2 tiến trình. 
Hà Viết Hải, Trần Văn Long 7 
Bảng 2. Thời gian thực hiện trên một máy 
Kích thước ma trận Tuần tự (giây) OpenMP (giây) 
3000 x 3000 
6000 x 6000 
9000 x 9000 
12000 x 12000 
258,9 
1852,7 
7314,5 
14990,5 
142,4 
1048,7 
3986,2 
8999,4 
Ở Bảng 2, dễ dàng nhận thấy rằng thời gian thực thi của chương trình tuần tự và song song theo OpenMP tỷ lệ 
thuận với kích thước của ma trận. Dữ liệu cũng cho thấy, so với tốc độ thực thi của chương trình tuần tự, tốc độ thực 
thi của chương trình OpenMP nhanh gấp 1,8 lần đối với ba ma trận đầu tiên, và nhanh gấp 1,65 lần đối với ma trận thứ 
tư. Đây là các giá trị nằm trong dự kiến. 
Phần tiếp theo của thử nghiệm là so sánh giữa CAPE và MPI. 
Hình 4. Thời gian thực hiện theo số node (đơn vị tính: giây) 
Hình 4 và Hình 5 thể hiện thời gian thực thi (đơn vị tính là giây) của việc nhân hai ma trận với số lượng các 
máy và kích thước ma trận khác nhau. Lưu ý rằng, mặt dù cấu hình máy tính được sử dụng để thực nghiệm là hai lõi 
(Dual Core), nhưng chỉ một lõi được sử dụng. Hai kỹ thuật được biểu diễn trong mỗi biểu đồ: cột bên trái biểu biểu 
diễn tốc độ thực hiện với CAPE, và bên phải biểu diễn tốc độ thực hiện với MPI. Tất cả các hình minh họa đều chứa 
hai nhóm biểu đồ. Nhóm phía trên liên quan đến các node chính, nhóm phía dưới liên quan đến node phụ. Các chỉ số 
về dòng mã được tham chiếu từ Hình 3. Mỗi nhóm biểu đồ lại chứa 4 biểu đồ thành phần: 
Init: là khoảng thời gian từ khi bắt đầu chạy chương trình đến khi bắt đầu thực hiện vòng lặp for song song 
trong bài toán nhân 2 ma trận. Theo quy ước ở công thức 4.2.1, ttt là thời gian thực hiện của bước này. 
Before: với CAPE, trên node chính, là khoảng thời gian để tạo ra và truyền các ảnh chụp tiến trình đến các node 
phụ (dòng 2-5). Đối với các node phụ, thời gian này bao gồm việc nhận và cập nhật ảnh chụp tiến trình vào không gian 
nhớ của tiến trình hiện tại (dòng 14-15). Đối với MPI, đây là thời gian truyền dữ liệu khởi tạo từ node chính đến các 
node con. Theo quy ước ở Bảng 1, tb là thời gian thực hiện của bước này. 
Final/Calculate: là thời gian tạo ra ảnh chụp tiến trình cuối cùng trên node chính (dòng 6-7) và thời gian để thực 
hiện việc tính toán trên các node phụ (dòng 16-17). Theo quy ước ở Bảng 1, tc là thời gian thực hiện của bước này. 
Update: là thời gian để node chính nhận tất cả các kết quả tính toán từ các node phụ và cập nhật vào không gian 
nhớ của node chính (dòng 8-9). Trên các node phụ, đây là khoảng thời gian để tạo các ảnh chụp tiến trình và gửi chúng 
đến node chính (dòng 18-20). Đối với MPI, đây là khoảng thời gian gửi kết quả tính toán được từ các node phụ đến 
node chính. Theo quy ước ở Bảng 1, tu là thời gian thực hiện của bước này. 
8 PHÂN TÍCH VÀ ĐÁNH GIÁ HIỆU NĂNG HOẠT ĐỘNG CỦA CAPE 
Hình 4 biểu diễn thời gian thực hiện với số lượng số node khác nhau trên bài toán nhân 2 ma trận có kích thước 
9000x9000. Tuy vậy, đối với các ma trận có kích thước khác, các kết quả có xu hướng tương tự. Các biểuđồ cho thấy 
trên node chính, các pha Init, Before và Final có thời gian rất nhỏ so với bước Update (ttt, tb và tc rất nhỏ so với tu). 
Điều này là do bước Update bao gồm trong đó việc chờ và nhận các kết quả tính toán từ các node phụ, tức là chứa cả 
quảng thời gian các mà các đoạn mã tính toán việc nhân ma trận được thực hiện. Từ nhận xét này, ta có thể xem thời 
gian thực hiện chương trình là bằng tu trên node chính. Tương tự như vậy đối với các node phụ, thời gian của các bước 
Init và Before có thể được bỏ qua và có thể xem thời gian thực hiện chương trình là tổng của thời gian thực hiện việc 
phần mã tính toán và cập nhật kết quả thực hiện. Các nhận xét này phù hợp với các công thức 4.2.3 và 4.2.4. 
Hình 5. Thời gian thực hiện theo kích thước ma trận (đơn vị tính: giây) 
Dữ liệu trên Hình 4 cũng cho thấy, với thử nghiệm trên 3 node, thời gian thực hiện CAPE luôn luôn lớn hơn rất 
nhiều thời gian thực hiện của MPI. Kết quả này là do lúc này mỗi node tính toán thực hiện một nửa số tính toán của 
phép nhân ma trận và cũng cập nhật một nửa kích thước ma trận kết quả, do đó kích thước của ảnh chụp tiến trình 
chiếm tỷ lệ khá lớn trong tổng không gian nhớ của tiến trình, dẫn đến tác động của quá trình đánh dấu tiến trình lên 
thời gian thực thi mã ứng dụng là lớn. Tuy nhiên khi tăng dần số lượng máy, tương ứng với nó là các ảnh chụp tiến 
trình có kích thước càng nhỏ thì khoảng cách chênh lệch giữa CAPE và MPI càng lúc càng thu hẹp. Khi tăng đến 31 
máy, thời gian này là xấp xỉ như nhau. Kết quả này cho thấy hiệu suất của CAPE rất kém với số node ít và chỉ nên sử 
dụng nó với số node khá lớn. Tuy nhiên, điều này là không nghiêm trọng vì hiện tại các máy tính với bộ xử lý 4 lõi đã 
trở nên phổ biến, và số lõi sẽ ngày càng tăng. Do đó, với yêu cầu số tiến trình thấp, thay vì sử dụng CAPE, ta có thể sử 
dụng OpenMP kiểu đa thread trên các máy tính đa lõi này. Mặt khác, nó cũng chỉ ra rằng, CAPE có khả năng đạt hiệu 
suất cao khi kích thước các ảnh chụp tiến trình là bé, tức 
là các đoạn mã ứng dụng tại các node phụ chỉ cập nhật 
một dung lượng nhỏ không gian nhớ của tiến trình. 
Hình 5 biểu diễn thời gian thực thi đối với các 
kích thước ma trận khác nhau. Số lượng máy để thực hiện 
tính toán song song là 31 máy. Tuy vậy, các kết quả có xu 
hướng tương tự khi thực nghiệm trên hệ thống có số 
lượng máy tính khác nhau (trừ trường hợp 3 node). Các 
nhận xét cho biểu đồ ở Hình 4 cũng đúng cho biểu đồ 
này. Số liệu trên biểu đồ cho thấy thời gian thực thi của 
CAPE và MPI tỷ lệ thuận với kích thước của ma trận. Do 
cả MPI và CAPE đều sử dụng cơ chế chỉ truyền dữ liệu 
để cập nhật kết quả tính toán, nên tốc độc thực thi cũng 
khá tương tự nhau. Phân tích chi tiết hơn, ta thấy rõ tổng 
thời gian thực thi của CAPE sử dụng kỹ thuật đánh dấu 
tiến trình gia tăng rời rạc chỉ cao hơn khoảng 10% so với 
của MPI, trừ ma trận có kích thước 3000x3000 có tỷ lệ là 
1,3. 
Hình 6. Hệ số tăng tốc của CAPE theo số node 
Hà Viết Hải, Trần Văn Long 9 
Hình 6 biểu diễn hệ số tăng tốc (speedup) của CAPE trên số lượng các máy và các kích thước ma trận khác 
nhau. Đường đứt nét biểu diễn sự gia tăng tối đa lý thuyết. Biểu đồ này cho thấy một cách rõ ràng rằng giải pháp CAPE 
đã đạt được kết quả rất tốt, với hệ số tăng tốc đo được nằm trong khoảng 75% đến 90%. 
VI. KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN 
CAPE, với khả năng tự động phân chia công việc và xác lập các dữ liệu trao đổi giữa các tiến trình, đã chứng tỏ 
được khả năng của nó để cài đặt OpenMP một cách tương thích hoàn toàn trên hệ thống sử dụng bộ nhớ phân tán. Mặt 
khác, các kết quả so sánh hiệu suất của CAPE với MPI thông qua phân tích lý thuyết cũng như thực nghiệm ở các 
chương trên đã chứng tỏ được về mặt hiệu suất thì CAPE hoàn toàn có khả năng so sánh được với giải pháp có hiệu 
năng cao nhất là MPI, nhất là với hệ thống có số node lớn và các chương trình có mã sao cho sau khi phân chia thì ở 
mỗi node, dung lượng không gian nhớ được cập nhật là bé (so với toàn bộ không gian nhớ của tiến trình). Các kết quả 
ở trên cũng cho thấy nếu yêu cầu chạy OpenMP với số thread bé thì nên sử dụng OpenMP kiểu đa thread (thông qua 
một trình biên dịch C/C++ hỗ trợ OpenMP, chẳng hạn gcc trên Linux) trên một máy tính có bộ xử lý đa lõi. Trường 
hợp cần song song hóa với số lượng lớn các thread nhưng các mã thành phần cập nhật một phần lớn không gian nhớ 
của tiến trình thì nên sử dụng MPI, mặc dù chương trình ở dạng này khó viết hơn. 
Kế hoạch ngắn hạn tiếp theo của chúng tôi là thử nghiệm CAPE với tập các bài toán phong phú hơn. Tiếp theo 
chúng tôi sẽ tiếp tục phát triển CAPE để nó vượt qua các ràng buộc của điều kiện Bernstein đối với các bài toán ứng 
dụng. 
Với kế hoạch dài hạn hơn, chúng tôi sẽ nghiên cứu các mô hình hoạt động khác của CAPE để nó có thể được sử 
dụng một cách linh hoạt hơn, chẳng hạn như cho phép các đoạn mã tuần tự của chương trình ứng dụng chỉ cần được 
thực hiện trên một tiến trình, hoặc việc cập nhật không gian nhớ của các tiến trình phụ ở cuối mỗi đoạn mã song song 
có thể được làm trể để có thể kết hợp với phần cập nhật kết quả của đoạn mã tuần tự, điều này nhằm tăng hiệu suất hoạt 
động tổng thể của chương trình. 
TÀI LIỆU THAM KHẢO 
[1] Message Passing Interface Forum,  
[2] The OpenMP® API specification for parallel programming,  
[3] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, Pascal Gallard, Gaël Utard, R. Badrinath and Louis Rilling.,”Kerrighed: 
A Single System Image Cluster Op-erating System for High Performance Computing”, Euro-Par 2003 Parallel Pro-cessing, 
Klagenfurt, Austria, LNCS 2790, pp. 1291–1294(2003). 
[4] Mitsuhisa Sato, Hiroshi Harada, Atsushi Hasegawa and Yutaka Ishikaw,”Cluster-enabled OpenMP: An OpenMP compiler 
for the SCASH software dis-tributed shared memory system”, Journal Scientific Programming, Volume 9 Issue 2,3 (2001). 
[5] Sven Karlsson, Sung-Woo Lee, Mats Brorsson, Sahni Sartaj, Viktor K. Prasanna and Shukla Uday, “A fully compliant 
OpenMP implementation on software dis-tributed shared memory”. Proceedings of the International Conference on High 
Performance Computing, Bangalore, India, LNCS 2552, pp. 195–206 (2002). 
[6] Ayon Basumallik and Rudolf Eigenmann, “Towards automatic translation of OpenMP to MPI”, Proceedings of the 19th 
annual international conference on Supercomputing, Cambridge, MA, pp. 189–198 (2005). 
[7] Beniamino Di Martino, Dieter Kranzlmüller and Jack Dongarra, “Implementing OpenMP for clusters on top of MPI”, 
Proceedings of 12th European PVM/MPI Users’ Group Meeting Sorrento, LNCS, Volume 3666, pp 148–155 (2005). 
[8] Lei Huang and Barbara Chapman and Zhenying Liu, “Towards a more efficient implementation of OpenMP for clusters via 
translation to global arrays”, Journal of Parallel Computing 31, pp 1114–1139(2005). 
[9] Jay P. Hoeflinger, “Extending OpenMP* to Clusters”, White paper, Available at: 
attachment/wiki/Osaka/ In-tel_Extend_OpenMP_Cluster.pd 
[10] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, PascalGallard, Gaël Utard, R. Badrinath and Louis Rilling, “Kerrighed: 
A Single System Image Cluster Operating System for High Performance Computing”, Euro-Par 2003 Parallel Processing, 
Klagenfurt, Austria, LNCS 2790, pp. 1291–1294 (2003). 
[11] Eric Renault, “Distributed Implementation of OpenMP Based on Checkpointing Aided Parallel Execution”, International 
Workshop on OpenMP (IWOMP), Beijing, China, LNCS 4935, pp.183-193(2007). 
[12] Viet Hai Ha and Éric Renault, “Improving Performance of CAPE using Discontinuous Incremental Checkpointing”, 
Proceedings of the International Conference on High Performance and Communications 2011 (HPCC-2011), Banff, Canada 
(2011). 
[13] Jame S. Plank, “An Overview of Checkpointing in Uniprocessor and Distributed Systems, Focusing on Implementation and 
Performance”, Technical Report UTCS-97-372, Department of Computer Science, University of Tennessee, Juilly (1997). 
[14] Viet Hai Ha and Éric Renault, “Discontinous Incremental: A New Approach Towards Extremely Lighweight Checkpoints”, 
Proceedings of the IEEE Incremental Symposium on Computer Networks and Distributed System 2011 (CNDS 2011), 
Tehran, Iran (2011). 
[15] Gioiosa R., Sancho J.C., Jiang S. and Petrini F, “Transparent, Incremental Checkpointing at Kernel Level: a Foundation for 
Fault Tolerance for Parallel Computers”, Proceedings of the ACM/IEEE SC 2005 Conference (2005). 
10 PHÂN TÍCH VÀ ĐÁNH GIÁ HIỆU NĂNG HOẠT ĐỘNG CỦA CAPE 
ANALYSE AND EVALUATE THE PERFORMANCE OF CAPE 
Viet Hai Ha
1
, Van Long Tran
2 
1 Hue University’s College of Education, Vietnam 
2 
Hue Industrial College, Vietnam 
haviethai@gmail.com, tvlong@hueic.edu.vn 
ABSTRACT— MPI (Message Passing Interface) and OpenMP are two tools broadly used to develop parallel programs. 
MPI has advantage of high performance but is difficult to be used while OpenMP is very easy to be applied. The most important 
disadvantage of OpenMP is its restriction on shared memory architectures. CAPE (Checkpointing Aided Parallel Execution) is an 
approach using checkpointing to implement OpenMP on distributed memory architectures. This paper aims at deeply analyzing and 
evaluating the performance of CAPE by comparing its execution model and the one of MPI, then providing the suggestions to use 
CAPE effectively. 

File đính kèm:

  • pdfphan_tich_va_danh_gia_hieu_nang_hoat_dong_cua_cape.pdf