Bài giảng Xác suất thống kê - Chương 3: Quy luật phân phối xác suất thường gặp
• Định nghĩa. Một biến ngẫu nhiên rời rạc X gọi là có phân phối Nhị thức nếu:
• Một thí nghiệm hoặc một phép thử được thực hiện trong cùng một điều kiện đúng n lần
• Trong mỗi phép thử chỉ có 2 biến cố. Một biến cố gọi là “thành công” và một biến cố “thất bại”.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Xác suất thống kê - Chương 3: Quy luật phân phối xác suất thường gặp", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Xác suất thống kê - Chương 3: Quy luật phân phối xác suất thường gặp
2/15/2019 1 QUY LUẬT PHÂN PHỐI XÁC SUẤT THƯỜNG GẶP 1 Chương 3 Chương 3 2 3.1. Biến ngẫu nhiên rời rạc • Luật “không - một” A(p) Bernoulli • Luật nhị thức B(n,p) Binomial • Luật Poisson P() Poisson • Luật siêu bội H(N,M, n) Hypergeometric 3 Phân phối Không – một • Ký hiệu khác: X~A(p) • Còn gọi là phân phối Bernoulli. • Bảng ppxs: • Tham số đặc trưng: 4 X 0 1 P q p E X p V X pq Phân phối Nhị thức (Binomial) • Kí hiệu: X~B(n,p) • Hàm khối xác suất: • x={0,1,2,3n} • n,p gọi là các tham số (parameter) 5 k x n xnp x C p q Khi nào có phân phối B(n,p) • Định nghĩa. Một biến ngẫu nhiên rời rạc X gọi là có phân phối Nhị thức nếu: • Một thí nghiệm hoặc một phép thử được thực hiện trong cùng một điều kiện đúng n lần • Trong mỗi phép thử chỉ có 2 biến cố. Một biến cố gọi là “thành công” và một biến cố “thất bại”. • n phép thử độc lập nhau. • Xác suất thành công, ký hiệu p, là như nhau trong mỗi phép thử. Xác suất thất bại là q=1-p. • Biến ngẫu nhiên X = số lần thành công trong n phép thử 6 2/15/2019 2 Ví dụ 1 • Một đồng xu được chế tạo sao cho xác suất xuất hiện mặt ngửa mỗi lần tung là 70%. Tung đồng xu 100 lần, theo các cách y hệt nhau. Gọi X là số lần đồng xu xuất hiện mặt ngửa. X có phải là biến ngẫu nhiên có phân phối Nhị thức? • Một giảng viên đại học lấy mẫu ngẫu nhiên các sinh viên cho đến khi anh ta tìm thấy bốn sinh viên tình nguyện đi mùa hè xanh. Đặt X là số sinh viên được lấy mẫy. X có phải là biến ngẫu nhiên có phân phối nhị thức không? 7 Ví dụ 2 • Một cuộc khảo sát với cỡ mẫu n = 1000 người Mỹ trưởng thành ngẫu nhiên được tiến hành. Đặt X là số người sở hữu một chiếc xe thể thao đa dụng (SUV) trong mẫu. X có phải là biến ngẫu nhiên nhị thức không? • Một nhân viên kiểm soát chất lượng điều tra một lô gồm 15 sản phẩm. Anh ta lấy mẫu ngẫu nhiên (không thay thế) 5 sản phẩm từ lô. Đặt X bằng số sản phẩm đạt yêu cầu. X có phải là biến ngẫu nhiên nhị thức không? 8 Effect of n and p on Shape 9 For small p and small n, the binomial distribution is what we call skewed right For large p and small n, the binomial distribution is what we call skewed left Effect of n and p on Shape 10 For p = 0.5 and large and small n, the binomial distribution is what we call symmetric. For small p and large n, the binomial distribution approaches symmetry. Tham số đặc trưng • Cho bnn X~B(n,p). Ta có: 11 ) ) ) 1 1 1 i E X np ii VX npq iii n p ModX n p Ví dụ 3 • Xác suất để 1 bệnh nhân được chữa khỏi khi điều trị một bệnh hiếm gặp về máu là 0,4. Nếu 15 người đồng ý chữa trị thì xác suất: • A) Có ít nhất 10 người khỏi • B) Có từ 3 đến 8 người khỏi • C) Có đúng 5 người khỏi Là bao nhiêu? 12 2/15/2019 3 Ví dụ 4 • Một chuỗi cửa hàng bán lẻ lớn mua một loại thiết bị điện tử về để bán. Nhà sản xuất cho biết tỷ lệ bị hư hỏng của loại thiết bị này là 3%. a) Bộ phận kiểm tra lấy ngẫu nhiên 20 thiết bị từ lô hàng được giao. Xác suất có ít nhất 1 thiết bị hỏng là bao nhiêu? b) Giả sử cửa hàng nhập 10 lô hàng 1 tháng và với mỗi lô hàng đều được kiểm tra ngẫu nhiên 20 thiết bị. Xác suất có đúng 3 lô hàng có chứa ít nhất 1 thiết bị hỏng trong số 20 thiết bị được kiểm tra? 13 Ví dụ 5 • Có giả thiết cho rằng 30% các giếng nước ở vùng nông thôn có tạp chất. Để có thể tìm hiểu kỹ hơn người ta đi xét nghiệm một số giếng (vì không đủ tiền xét nghiệm hết). • A) Giả sử giả thiết trên đúng, tính xác suất có đúng 3 giếng có tạp chất. • B) Xác suất có nhiều hơn 3 giếng có tạp chất? • C) Giả sử trong 10 giếng đã kiểm tra thì có 6 giếng có tạp chất. Có thể kết luận gì về giả thiết trên? 14 Phân phối siêu bội • Định nghĩa. Nếu ta chọn ngẫu nhiên n phần tử, không hoàn lại, trong một tập hợp gồm N phần tử với: • NA phần tử thuộc một loại, giả sử loại A. • Và N- NA phần tử còn lại thuộc loại khác. • Gọi X là số phần tử loại A trong số n phần tử được chọn. Khi này PDF của X dạng 15 . A A x n x N N N n N C C p x C Phân phối siêu bội • Các giá trị của bnn X thỏa mãn: • Biến ngẫu nhiên X gọi là có phân phối siêu bội. • Ký hiệu: X~H(N,NA,n) 16 ) ) ) A A i x n ii x N iii n x N N . A A x n x N N N n N C C p x C Các tham số đặc trưng Cho bnn X~H(N,NA,n) ta có: Trong đó: 17 ; 1 N n E X np V X npq N ; 1A N p q p N ModX • Ta có: • Với • Công thức trên cho ta khoảng chứa ModX. 18 0 0 1k ModX k 0 1 1 1 2 AN n k N 2/15/2019 4 Ví dụ 7 • Một hồ có 600 con cá, 80 con được đánh dấu bởi các nhà khoa học. Một nhà nghiên cứu chọn ngẫu nhiên 15 con từ hồ. Hãy tìm công thức cho hàm P.M.F của biến ngẫu nhiên X, với X là số cá được đánh dấu có trong mẫu lấy ra. 19 Ví dụ 8 • Giả sử có 5 người, trong đó có bạn và một người bạn của bạn, xếp hàng một cách ngẫu nhiên. Gọi X là biến ngẫu nhiên thể hiện số người ở giữa bạn và bạn của mình. Hãy xác định PMF của X dưới dạng bảng. Hãy kiểm ta tính hợp lý của hàm PMF này. 20 X 0 1 2 3 P 0,4 0,3 0,2 0,1 Ví dụ 9 • Kiện hàng chứa 40 sản phẩm. Bên mua sẽ không mua kiện hàng nếu có từ 3 sản phẩm lỗi trở lên. Để tiện, bên mua quy ước lấy 5 sản phẩm ra kiểm tra, nếu có đúng 1 sản phẩm lỗi thì không mua lô hàng. Xác suất tìm thấy đúng 1 sản phẩm lỗi biết lô hàng có 3 sản phẩm lỗi là bao nhiêu? 21 Ví dụ 10 Trong một cửa hàng bán 100 bóng đèn có 5 bóng hỏng. Một người mua ngẫu nhiên 3 bóng. Gọi X là số bóng hỏng người đó mua phải. a) X pp theo qui luật gì? Viết biểu thức? b) Tính kì vọng, phương sai của bnn X? c) Tính ModX? 22 Ví dụ 11 Một hộp có 20 sản phẩm trong đó có 6 phế phẩm. Lấy ngẫu nhiên 4 sp từ hộp. Gọi X là số phế phẩm trong 4 sp. a) Luật phân phối xác suất của X. b) Tính E(X), Var(X)? c) Tìm Mod(X) 23 Quan hệ giữa Nhị thức và siêu bội 24 ~ ,X B n p ~ , ,AX H N N n n<<N N>20n A A k n k N N N k k n k nn N C C P X k C p q C 2/15/2019 5 Ví dụ 12 • Nhà sản xuất thông báo rằng trong số 5000 lốp xe máy gửi cho một nhà phân phối ở HCM có 1000 lốp
File đính kèm:
- bai_giang_xac_suat_thong_ke_chuong_3_quy_luat_phan_phoi_xac.pdf