Bài giảng Xác suất thống kê - Chương 2: Biến ngẫu nhiên một chiều
Khái niệm. Biến số gọi là biến ngẫu nhiên (random variable) nếu trong kết quả của phép thử nó sẽ nhận một và chỉ một giá trị có thể có của nó tùy thuộc vào sự tác động của các nhân tố ngẫu nhiên.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Xác suất thống kê - Chương 2: Biến ngẫu nhiên một chiều", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Xác suất thống kê - Chương 2: Biến ngẫu nhiên một chiều
2/14/2019 1 CHƯƠNG 2 BIẾN NGẪU NHIÊN MỘT CHIỀU 1 2.1 Khái niệm và phân loại • Khái niệm. Biến số gọi là biến ngẫu nhiên (random variable) nếu trong kết quả của phép thử nó sẽ nhận một và chỉ một giá trị có thể có của nó tùy thuộc vào sự tác động của các nhân tố ngẫu nhiên. • Ký hiệu: X, Y, Z hay X1,X2, • Giá trị có thể có của bnn: chữ thường x, y, z, • {X≤x} {Y=y} là các biến cố ngẫu nhiên. 2 Ví dụ 1 • X: Lượng khách vào một cửa hàng trong ngày • Y: Tuổi thọ của một chiếc điện thoại • Trả ngẫu nhiên 3 mũ bảo hiểm cho 3 người. Gọi Z: số mũ bảo hiểm được trả đúng người • T: Số sản phẩm hỏng trong 100 sản phẩm mới nhập về • U: Chiều cao của một sinh viên gọi ngẫu nhiên trong lớp này 3 Phân loại bnn 4 Phân loại 5 Rời rạc - Hữu hạn giá trị - Vô hạn đếm được giá trị - Xác suất tập trung tại các điểm giá trị Biến ngẫu nhiên Liên tục - Giá trị lấp đầy một hay vài khoảng hữu hạn hoặc vô hạn - Xác suất tại từng khoảng giá trị - Xác suất không tập trung tại các điểm P(X=a)=0 với mọi a Ví dụ 2 • Hộp có 6 viên bi gồm 4 trắng và 2 vàng. Lấy ngẫu nhiên 2 viên bi từ hộp. Đặt Y là số viên bi vàng có trong 2 viên lấy ra. • Khi đó Y cũng là biến ngẫu nhiên. • Ta có: • “Y=0”, “Y=1”, “Y<2” là các biến cố nào??? 6 0 1 2; ;Y 2/14/2019 2 Hai biến ngẫu nhiên độc lập • Hai biến ngẫu nhiên X, Y độc lập nếu hai biến cố: • Độc lập nhau với mọi giá trị của x, y. • Nói cách khác mọi biến cố liên quan đến hai biến ngẫu nhiên X, Y luôn độc lập nhau. 7 X x Y y 2.2 Quy luật phân phối xác suất 8 • Biểu diễn quan hệ giữa các giá trị của biến ngẫu nhiên và xác suất tương ứng. Luật phân phối xác suất Hàm phân bố xác suất (CDF) Rời rạc + Liên tục Xác suất bên trái Tỷ lệ bên trái F(x) Hàm khối xác suất (PMF) Rời rạc Xác suất tại điểm p(x) f(x) Hàm mật độ xác suất (PDF) Liên tục Mật độ xác suất f(x) 9 • Biểu diễn quan hệ giữa các giá trị của biến ngẫu nhiên và xác suất tương ứng. • Thường gặp 3 dạng: Hàm phân phối xác suất • Hàm phân phối xác suất (Cumulative Distribution Function), viết tắt CDF của biến ngẫu nhiên X là hàm xác định: • {X≤x} : biến cố “bnn X nhận giá trị nhỏ hơn hay bằng x” • Đôi khi ta còn gọi là hàm phân bố xác suất hay hàm tích lũy xác suất. 10 ( ) ;X xF x P X x Tính chất 11 i) 0 1,XF x x R ii) XF x là hàm không giảm, liên tục bên phải. Nếu X là biến ngẫu nhiên liên tục thì F x là hàm liên tục trên R. iii) lim 0X X x F F x lim 1X X x F F x iv) X XP a X b F b F a . Hàm phân phối xác suất 12 2/14/2019 3 Hàm khối xác suất • Probability Mass Function (PMF) • Tính chất: 13 Xp x P X x ) 0 ) 1 ) X X x X x A i p x ii p x iii P A p x • Dạng bảng • Dạng đồ thị Bnn Rời rạc - Bảng ppxs • Bảng phân phối xác suất của X. • xi : giá trị có thể có của bnn X • pi : xác suất tương ứng; 14 X x1 . x2 . xn P p1 . p2 . pn 1 )) ( ) ( ) 1 i X n i i i ii p p x i x p P X i PMF và CDF 15 PMF và CDF • Hàm phân phối xác suất được xác định như sau: 16 1 1 1 2 1 2 2 3 1 1 1 0 , , , ............................................ ... , X k k k x x p x x x F x p p x x x p p x x x k X X k x x F x P X x p x Ví dụ 3 Xét phép thử tung hai đồng xu phân biệt. Không gian mẫu là: Ω = {𝑆𝑆; 𝑆𝑁;𝑁𝑆;𝑁𝑁} Gọi X là số lần mặt sấp xuất hiện, X là bnn rời rạc. Hàm khối xác suất: 17 1/ 4 ; 0 2 1/ 2 ; 1 0 ; 0; 1; 2 X x hay x p x x x Ví dụ 3 • Hàm phân phối xác suất: 18 X 0 1 2 P 1/4 1/2 1/4 0 , 0 1/ 4 ,0 1 3 / 4 ,1 2 1 ,2 X x x F x x x 2/14/2019 4 Ví dụ 4 • Một hộp có 10 sản phẩm trong đó có 6 sản phẩm đạt loại A. Lấy ngẫu nhiên 2 sản phẩm. • Lập bảng phân phối xác suất của số sản phẩm loại A lấy ra? • Xác định PMF, CDF? 19 Ví dụ 5 Có 2 kiện hàng. Kiện 1 có 4 sản phẩm tốt, 3 sản phẩm xấu. Kiện 2 có 6 sản phẩm tốt, 4 sản phẩm xấu. Lấy ngẫu nhiên từ kiện 1 ra 2 sản phẩm và từ kiện 2 ra 1 sản phẩm. a) Lập bảng phân phối xác suất của số sản phẩm tốt trong 3 sản phẩm lấy ra? b) Xác định PMF, CDF 20 Ví dụ 6 • Luật Benford phát biểu rằng trong một lượng rất lớn các số thực ngoài đời, chữ số đầu tiên tuân theo luật phân phối với 30% là số 1, 18% là số 2 và nói chung: • Với D là chữ số đầu tiên của một phần tử chọn ngẫu nhiên. • Luật phân phối trên có hợp lý không? 21 10 1 log , {1,2,3...,9} j P D j j j Chú ý về BNN liên tục • Nếu X là bnn liên tục thì: 22 ) 0,) ) ( X a a ii P a X b P a i X P b Hàm mật độ xác suất 23 • Probability Density Function • Viết tắt: PDF 24 ) 0 ) 1 i f x x R ii f x dx Hàm mật độ xác suất 2/14/2019 5 PDF và CDF 25 f x x F x x F x f t dt f x F x Ví dụ 7 • Cho biến ngẫu nhiên X có CDF dạng: • A) Xác định hệ số k • B) Tìm PDF 26 2 0 , 0 ,0 1 1 ,1 x F x kx x x Ví dụ 8 • Cho biến ngẫu nhiên X có PDF dạng: • A) Xác định hệ số k • B) Tìm hàm CDF • C) Tính P(2<X<3) • D) Thực hiện 4 lần phép thử độc lập với bnn X. Tính xác suất bnn X không nhận giá trị trong khoảng (2;3) 27 2 1 k f x x x 2.3 Các tham số của biến ngẫu nhiên • Kỳ vọng (Expected Value) E(X) • Phương sai (Variance) V(X), Var(X) • Độ lệch chuẩn (Standard Deviation) • Mốt (Mode) m0 • Trung vị (Median) me • Hệ số biến thiên (Coefficient of Variation) CV • Hệ số bất đối xứng (Skewness) • Hệ số nhọn (Kurtosis) • Giá trị tới hạn 28 Kỳ vọng (Expected Value) • Kỳ vọng toán học của bnn X được ký hiệu là E(X) hay và tính theo công thức sau: • E(X) là trung bình theo xác suất của X • E(X) là số xác định và có cùng đơn vị với X 29 Tính chất 30 2/14/2019 6 Ví dụ 9 • Tung một cục xúc sắc nhiều lần. Gọi X là số chấm mặt ngửa của cục xúc sắc. • Tính kỳ vọng của X • Về lâu dài (in a long run) giá trị trung bình của những lần tung là bao nhiêu? Ý nghĩa kỳ vọng • Là giá trị trung bình của bnn (trong một quá trình lâu dài); phản ánh giá trị trung tâm của ppxs của bnn • Trong thực tế sản xuất hay kinh doanh, nếu cần chọn phương án
File đính kèm:
- bai_giang_xac_suat_thong_ke_chuong_2_bien_ngau_nhien_mot_chi.pdf