Tối ưu trọng lượng khung thép cột đặc dàn vì kèo sử dụng thuật toán tiến hóa vi phân
Kết cấu thép thường được sử dụng trong những công trình vượt khẩu độ lớn như nhà công nghiệp, nhà triển lãm, rạp hát, nhà thi đấu, sân vận động nhờ những ưu điểm như cường độ chịu lực cao, trọng lượng nhẹ. Kết cấu khung là dạng kết cấu phổ biến thường được áp dụng trong nhà công nghiệp có nhịp dưới 40 m. Bài báo giới thiệu một nghiên cứu về tối ưu trọng lượng cho khung thép bao gồm cột đặc liên kết với mái dàn vì kèo.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Bạn đang xem tài liệu "Tối ưu trọng lượng khung thép cột đặc dàn vì kèo sử dụng thuật toán tiến hóa vi phân", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Tối ưu trọng lượng khung thép cột đặc dàn vì kèo sử dụng thuật toán tiến hóa vi phân
Tạp chí Khoa học Công nghệ Xây dựng NUCE 2019. 13 (5V): 55–64 TỐI ƯU TRỌNG LƯỢNG KHUNG THÉP CỘT ĐẶC DÀN VÌ KÈO SỬ DỤNG THUẬT TOÁN TIẾN HÓA VI PHÂN Nguyễn Trần Hiếua,∗, Vũ Anh Tuấna, Nguyễn Quốc Cườnga aKhoa Xây dựng dân dụng và công nghiệp, Trường Đại học Xây dựng, số 55 đường Giải Phóng, quận Hai Bà Trưng, Hà Nội, Việt Nam Nhận ngày 29/08/2019, Sửa xong 17/09/2019, Chấp nhận đăng 18/09/2019 Tóm tắt Kết cấu thép thường được sử dụng trong những công trình vượt khẩu độ lớn như nhà công nghiệp, nhà triển lãm, rạp hát, nhà thi đấu, sân vận động nhờ những ưu điểm như cường độ chịu lực cao, trọng lượng nhẹ. Kết cấu khung là dạng kết cấu phổ biến thường được áp dụng trong nhà công nghiệp có nhịp dưới 40 m. Bài báo giới thiệu một nghiên cứu về tối ưu trọng lượng cho khung thép bao gồm cột đặc liên kết với mái dàn vì kèo. Quá trình tối ưu dựa trên thuật toán tiến hóa vi phân được triển khai bằng ngôn ngữ lập trình VBA với các biến thiết kế là tiết diện của cột thép và các thanh dàn, hàm mục tiêu là trọng lượng của cả khung thép và ràng buộc thiết kế gồm thỏa mãn đồng thời cả trạng thái giới hạn về chịu lực và trạng thái giới hạn về điều kiện sử dụng. Việc kiểm tra các ràng buộc thiết kế này được thực hiện qua phân tích kết cấu bằng phần mềm CSI SAP2000. Một ví dụ bằng số được thực hiện để minh họa khả năng của thuật toán tối ưu. Ví dụ khảo sát một số yếu tố như hình dạng dàn, cấu tạo hệ thanh bụng của dàn với mục đích tìm ra sơ đồ hợp lý cho dạng kết cấu trên. Từ khoá: kết cấu thép; nhà công nghiệp; khung thép dàn vì kèo; tối ưu kết cấu; thuật toán tiến hóa vi phân. WEIGHT OPTIMIZATION OF STEEL TRUSS FRAMES USING DIFFERENTIAL EVOLUTION ALGO- RITHM Abstract Structural steel is most commonly used in large-span buildings such as industrial buildings, exhibitions, the- aters, gymnasiums, and stadiums because of its advantages including high strength, lightweight. The portal frame is the most popular structure which is normally applied to industrial buildings up to 40 m span. This article presents a study on the weight optimization of steel truss frames. The optimization process based on differential evolution algorithm, is implemented by VBA language. The design variables are the cross-section dimensions of column and truss members, the objective function is the weight of the truss frame while the design constraint includes satisfying both of ultimate limit state and serviceability limit state. The design con- straints are checked using the software CSI SAP2000. An example is then conducted to demonstrate the appli- cability of the developed program. Moreover, a survey is carried out by changing the shape of the truss and the configuration of the web members. The purpose of the survey is to find the most suitable shape for this kind of structure. Keywords: steel structures; industrial buildings; truss frames; structural optimization; differential evolution algorithm. https://doi.org/10.31814/stce.nuce2019-13(5V)-07 c© 2019 Trường Đại học Xây dựng (NUCE) 1. Giới thiệu Trong những năm gần đây, nhu cầu xây dựng nhà xưởng phục vụ sản xuất tăng cao dẫn đến sự bùng nổ về số lượng các công ty chế tạo kết cấu thép. Để tăng sức cạnh tranh dưới áp lực của thị ∗Tác giả chính. Địa chỉ e-mail: hieunt2@nuce.edu.vn (Hiếu, N. T.) 55 Hiếu, N. T., và cs. / Tạp chí Khoa học Công nghệ Xây dựng trường, các đơn vị sản xuất luôn yêu cầu kỹ sư thiết kế đưa ra phương án kết cấu kinh tế nhất trong khi vẫn phải đảm bảo điều kiện chịu lực. Phương pháp thường được các kỹ sư sử dụng là phương pháp “thử - sai”. Tuy nhiên đối với bài toán có quá nhiều biến số, phương pháp này hiệu quả không cao khi phải thử đi thử lại nhiều trường hợp, kết quả thu được không đảm bảo là kết quả tối ưu nhất mà phụ thuộc nhiều vào kinh nghiệm của kỹ sư thiết kế. Điều này dẫn tới nhu cầu nghiên cứu những thuật toán tìm kiếm phương án tối ưu hiệu quả hơn nhằm giảm thời gian thiết kế cũng như đảm bảo luôn thu được kết quả tốt nhất. Từ lâu, bài toán tối ưu đã được nhiều nhà khoa học quan tâm nghiên cứu. Một số lý thuyết tối ưu như quy hoạch tuyến tính, quy hoạch phi tuyến, quy hoạch động đã được đưa vào giảng dạy trong chương trình bậc đại học. Những lý thuyết này hứa hẹn có thể giải quyết được nhiều bài toán trong lĩnh vực giao thông, xuất nhập khẩu, đem lại hiệu quả kinh tế lớn. Trong ngành xây dựng, bài toán tối ưu kết cấu công trình cũng được nghiên cứu từ khá sớm [1]. Do bài toán tối ưu kết cấu thường là phi tuyến, rời rạc, nhiều biến số, những thuật toán dựa trên cơ chế tự nhiên như thuật toán tiến hóa (Evolutionary Algorithms – EAs) hoặc thuật toán trí tuệ bầy đàn (Swarm Intelligence – SI) tỏ ra có ưu thế hơn những loại thuật toán khác. Các thuật toán tiến hóa bao gồm: giải thuật di truyền (Genetic Algorithm – GA) [2], quy hoạch di truyền (Genetic Programming – GP), quy hoạch tiến hóa (Evolution Programming – EP), chiến lược tiến hóa (Evolution Strategy – ES) [3], tiến hóa vi phân (Differential Evolution – DE) [4]. Nhóm thuật toán trí tuệ bầy đàn có thể liệt kê một số thuật toán điển hình như thuật toán tối ưu bầy đàn (Particle Swarm Optimization – PSO) [5], thuật toán đàn kiến (Ant Colony Optimization – ACO) [6], thuật toán bầy ong (Artificial Bee Colony – ABC) [7], . . . Đối với kết cấu khung thép nói riêng, một số nghiên cứu về tối ưu dựa trên EA hoặc SI đã được triển khai [8–16]. Thuật toán thông dụng nhất là GA được đề xuất từ những năm 60 của thế kỷ XX [8, 10, 13–15]. Trong [16], các tác giả đã áp dụng thuật toán DE để tối ưu một số dạng kết cấu như khung cột vát - dàn vì kèo, khung cột và xà ngang vát,... Chương trình tối ưu phát triển trong [16] đọc kết quả phân tích kết cấu được xuất ra từ phần mềm SOFISTiK dưới dạng tệp văn bản do SOFISTiK chưa cho phép kết nối trực tiếp với các phần mềm khác. Vấn đề này được giải quyết trong [17] bằng cách sử dụng tính năng oAPI (open Application Programming Interface) của phần mềm CSI SAP2000. Hạn chế của chương trình phát triển trong ... #, Matlab, Python [19]. Sơ đồ khối chương trình FrameOpt được thể hiện trong Hình 2. Hình 2. Sơ đồ khối chương trình FrameOpt ( )(0,1)é ù= + ´ -ë ûL U Lij j j jx x round rnd x x ( )2 3= + é ´ - ùë ûi ri r rround Fv x x x Hình 2. Sơ đồ khối chương trình FrameOpt 4. Ví dụ bằng số Áp dụng thuật toán DE để tối ưu trọng lượng một khung thép có các thông số cụ thể như sau: khung ngang có nhịp L = 24 m, bước B = 7 m, cao trình đỉnh ray H1 = 8 m, khoảng cách từ đỉnh ray đến đáy dàn vì kèo H2 = 2 m, chiều cao đầu dàn h0 = 1,5 m (Hình 3). Công trình đặt tại vùng gió III.B, dạng địa hình B. Cầu trục sức trục Q = 25 T, chế độ làm việc trung bình. Vật liệu thép mác CCT34 có cường độ tiêu chuẩn (giới hạn chảy) fy = 220 N/mm2 và cường độ kéo đứt tiêu chuẩn (giới hạn bền) fu = 340 N/mm2. Thanh chống dọc được bố trí tại những vị trí như thể hiện trong Hình 3. Khoảng cách theo phương ngang giữa các thanh chống dọc trên mặt phẳng mái là 6 m. Tạp chí Khoa học Công nghệ Xây dựng NUCE 2019 9 4. Ví dụ bằng số Hình 3. Kích thước hình học của khung ngang Áp dụng thuật toán DE để tối ưu trọng lượng một khung thép có các thông số cụ thể như sau: khung ngang có nhịp L=24 m, bước B=7 m, cao trình đỉnh ray H1=8 m, khoảng cách từ đỉnh ray đến đáy dàn vì kèo H2=2 m, chiều cao đầu dàn h0=1,5 m (Hình 3). Công trình đặt tại vùng gió III.B, dạng địa hình B. Cầu trục sức trục Q=25 T, chế độ làm việc trung bình. Vật liệu thép mác CCT34 có cường độ tiêu chuẩn (giới hạn chảy) fy=220 N/mm2 và cường độ kéo đứt tiêu chuẩn (giới hạn bền) fu=340 N/mm2. Thanh chống dọc được bố trí tại những vị trí như thể hiện trong Hình 3. Khoảng cách theo phương ngang giữa các thanh chống dọc trên mặt phẳng mái là 6 m. Do sự hạn chế chủng loại của tiết diện thép cán nóng theo tiêu chuẩn Việt Nam, nghiên cứu sử dụng danh mục thép hình cán nóng theo tiêu chuẩn Châu Âu. Cụ thể đối với cột sử dụng thép hình HE là loại tiết diện chữ I cán nóng cánh rộng, phù hợp để làm cấu kiện chịu nén uốn. Thanh dàn sử dụng tiết diện hộp vuông. Để hạn chế số loại tiết diện trong dàn vì kèo, các thanh dàn được nhóm thành 5 nhóm bao gồm: thanh cánh trên, thanh cánh dưới, thanh xiên đầu dàn, các thanh xiên còn lại và thanh đứng. Các thanh trong cùng một nhóm có tiết diện giống nhau. Tổng số biến thiết kế trong bài toán là D=6 biến với giới hạn biên được trình bày cụ thể trong Bảng 2. Các thông số khác như kích thước của khung, tải trọng tác dụng không thay đổi trong suốt quá trình tối ưu được coi là hằng số thiết kế. Kết cấu được coi làm việc hoàn toàn trong giai đoạn đàn hồi tuyến tính. Phân tích kết cấu không kể đến ảnh hưởng của hiệu ứng bậc hai. Kết quả phân tích được sử dụng để kiểm tra khả năng chịu lực của cấu kiện và điều kiện chuyển vị theo tiêu Hình 3. Kích thước hình học của khung ngang Do sự ạn chế chủng loại của tiết diện thép cán nóng theo tiêu chuẩn Việt Nam, nghiên cứu sử dụng danh mục thép hình cán nóng theo tiêu chuẩn Châu Âu. Cụ thể đối với cột sử dụng thép hình HE là loại tiết diện chữ I cán nóng cánh rộng, phù hợp để làm cấu kiện chịu nén uốn. Thanh dàn sử dụng tiết diện hộp vuông. Để hạn chế số loại tiết diện trong dàn vì kèo, các thanh dàn được nhóm thành 5 nhóm bao gồm: thanh cánh trên, thanh cánh dưới, thanh xiên đầu dàn, các thanh xiên còn lại và thanh đứng. Các thanh trong cùng một nhóm có tiết diện giống nhau. Tổng số biến thiết kế trong bài toán là 61 Hiếu, N. T., và cs. / Tạp chí Khoa học Công nghệ Xây dựng D = 6 biến với giới hạn biên được trình bày cụ thể trong Bảng 2. Các thông số khác như kích thước của khung, tải trọng tác dụng không thay đổi trong suốt quá trình tối ưu được coi là hằng số thiết kế. Bảng 2. Giới hạn của biến số thiết kế STT Biến số Giới hạn biên 1 Cột HE100A ÷ HE1000M (số lượng tiết diện ntd = 70) 2 Thanh cánh trên 50 × 3 ÷ 300 × 12,5 (số lượng tiết diện ntd = 56) 3 Thanh cánh dưới 4 Thanh xiên đầu dàn 5 Thanh xiên khác 6 Thanh đứng Kết cấu được coi làm việc hoàn toàn trong giai đoạn đàn hồi tuyến tính. Phân tích kết cấu không kể đến ảnh hưởng của hiệu ứng bậc hai. Kết quả phân tích được sử dụng để kiểm tra khả năng chịu lực của cấu kiện và điều kiện chuyển vị theo tiêu chuẩn Việt Nam. Sử dụng chương trình FrameOpt đã phát triển ở Mục 3.5 để tối ưu trọng lượng cho 04 trường hợp khung thép có cùng số liệu thiết kế như trên nhưng hình dạng và cấu tạo dàn khác nhau, cụ thể: - Khung A: dàn hình thang, hệ thanh bụng tam giác (Hình 4(a)). - Khung B: dàn hình thang, hệ thanh bụng xiên (Hình 4(b)). - Khung C: dàn hai cánh song song, hệ thanh bụng tam giác (Hình 4(c)). - Khung D: dàn hai cánh song song, hệ thanh bụng xiên (Hình 4(d)). Tạp chí Khoa học Công nghệ Xây dựng NUCE 2019 10 chuẩn Việt Nam. Bảng 2. Giới hạn của biến số thiết kế STT Biến số Giới hạn biên 1 Cột HE100A ÷ HE1000M (số lượng tiết diện ntd=70) 2 Thanh cánh trên o50x3 ÷ o300x12,5 (số lượng tiết diện ntd=56) 3 Thanh cánh dưới 4 Thanh xiên đầu dàn 5 Thanh xiên khác 6 Thanh đứng Sử dụng chương trình FrameOpt đã phát triển ở Mục 3.5 để tối ưu trọng lượng cho 04 trường hợp khung thép có cùng số liệu thiết kế như trên nhưng hình dạng và cấu tạo dàn khác nhau, cụ thể: - Khung A: dàn hình thang, hệ thanh bụng tam giác (Hình 4(a)). - Khung B: dàn hình thang, hệ thanh bụng xiên (Hình 4(b)). - Khung C: dàn hai cánh song song, hệ thanh bụng tam giác (Hình 4(c)). - Khung D: dàn hai cánh song song, hệ thanh bụng xiên (Hình 4(d)). Hình 4. Các trường hợp dàn vì kèo trong nghiên cứu Một số nghiên cứu khuyến cáo tiến hành chạy tối thiểu 20 lần độc lập cho mỗi bài toán và sử dụng thống kê để đánh giá độ tin cậy của thuật toán [22, 23]. Tuy nhiên, do hạn chế về tài nguyên tính toán, nghiên cứu trong bài báo sử dụng kết quả với thông số được thiết lập như sau: số lượng thế hệ ngenmax=100; số lượng cá thể trong một quần thể Np=10D=10´6=60; hệ số khuếch đại F=0,7 và hệ số lai ghép CR=0,8. Chương trình chạy trên máy tính có cấu hình: bộ vi xử lý Intel Core i5-5257 2,7 Ghz, bộ nhớ trong (RAM) 8 Gb. Quá trình tối ưu một trường hợp khung yêu cầu thực hiện 6060 lần phân tích kết cấu với tổng thời gian tính toán là 6 giờ 44 phút. Triển khai tối ưu cho 04 trường hợp khung. Kết quả tối ưu được trình bày trong Bảng 3. Giá trị hàm mục tiêu (tổng trọng lượng khung thép) nhỏ nhất ứng với mỗi thế (a) (b) (c) (d) Hình 4. Các trường hợp dàn vì kèo trong nghiên cứu Một số nghiên cứu khuyến cáo tiến hà chạy tối thiểu 20 lần độc lập cho mỗi bài toán và sử dụng thống kê để đánh giá độ tin cậy của thuật toán [21, 22]. Tuy nhiên, o hạn chế ề tài nguyên tính toán, nghiên cứu trong bài báo sử dụng kết quả với thông số được thiết lập như sau: số lượng thế hệ nmaxgen = 100; số lượng cá thể trong một quần thể Np = 10D = 10×6 = 60; hệ số khuếch đại F = 0,7 và hệ số lai ghép CR = 0,8. Chương trình chạy trên máy tính có cấu hình: bộ vi xử lý Intel Core i5-5257 2,7 Ghz, bộ nhớ trong (RAM) 8 Gb. Quá trình tối ưu một trường hợp khung yêu cầu thực hiện 6060 lần phân tích kết cấu với tổng thời gian tính toán là 6 giờ 44 phút. Triển khai tối ưu cho 04 trường hợp khung. Kết quả tối ưu được trình bày trong Bảng 3. Giá trị hàm mục tiêu (tổng trọng lượng khung thép) nhỏ nhất ứng với mỗi thế hệ trong suốt quá trình tối ưu được thể hiện ở Hình 5. Căn cứ trên kết quả tối ưu, một số nhận xét có thể rút ra như sau: - Khung D có trọng lượng lớn nhất, tiếp theo lần lượt là khung B, khung A và khung C. Hai khung A và C có trọng lượng chênh lệch nhau tương đối nhỏ. - Đối với cả dạng dàn hình thang và dàn hai cánh song song, cấu tạo hệ thanh bụng tam giác cho trọng lượng nhỏ hơn hệ thanh bụng xiên. 62 Hiếu, N. T., và cs. / Tạp chí Khoa học Công nghệ Xây dựng Bảng 3. Kết quả tối ưu Khung A Khung B Khung C Khung D Cột HE500A HE500A HE500A HE500A Thanh cánh trên 250 × 8 250 × 6,3 250 × 8 300 × 8 Thanh cánh dưới 180 × 5 250 × 8 180 × 5 250 × 8 Thanh xiên đầu dàn 70 × 3,6 60 × 4 60 × 3 60 × 3 Thanh xiên 60 × 3 50 × 3 60 × 3 50 × 3 Thanh đứng 50 × 3 50 × 4 50 × 3 50 × 3 Điều kiện ràng buộc chuyển vị g∆(x) 0,85 0,87 0,86 0,83 Điều kiện ràng buộc chịu lực gσ(x) 0,87 0,99 0,93 0,95 Tổng trọng lượng khung (kg) 6242 6748 6224 7402 Tạp chí Khoa học Công nghệ Xây dựng NUCE 2019 11 hệ tro g suốt quá trình tối ưu được thể hiện ở Hình 5. Hình 5. Trọng lượng nhỏ nhất của khung thép ứng với mỗi thế hệ Bảng 3. Kết quả tối ưu Khung A Khung B Khung C Khung D Cột HE500A HE500A HE500A HE500A Thanh cánh trên o250´8 o250´6,3 o250´8 o300´8 Thanh cánh dưới o180´5 o250´8 o180´5 o250´8 Thanh xiên đầu dàn o70´3,6 o60´4 o60´3 o60´3 Thanh xiên o60´3 o50´3 o60´3 o50´3 Thanh đứng o50´3 o50´4 o50´3 o50´3 Điều kiện ràng buộc chuyển vị gD(x) sau khi chuẩn hóa theo công thức (6) 0,85 0,87 0,86 0,83 Điều kiện ràng buộc chịu lực gs(x) sau khi chuẩn hóa theo công thức (6) 0,87 0,99 0,93 0,95 Hình 5. Trọng lượng nhỏ nhất của khung thép ứng với mỗi thế hệ 5. Kết luận và kiến nghị Bài báo trình bày một nghiên cứu trong đó thuật toán tiến hóa vi phân được sử dụng để tối ưu trọng lượng khung thép. Bài toán tối ưu có sáu biến số là tiết diện của các cấu kiện: cột, thanh dàn cánh trên, thanh dàn cánh dưới, thanh xiên đầu dàn, các thanh xiên còn lại và thanh đứng. Chương trình máy tính FrameOpt được phát triển nhằm triển khai thuật toán vào bài toán tối ưu kết cấu. Một ví dụ bằng số cho thấy tính khả thi của chương trình FrameOpt trong công tác thiết kế thực tế. Bên cạnh đó, kết quả khảo sát trên bốn trường hợp dàn có hình dáng và cấu tạo dàn khác nhau giúp đưa ra kết luận sơ bộ về sơ đồ hợp lý cho kết cấu dàn mái. Nghiên cứu có thể tiếp tục phát triển để áp dụng cho các loại kết cấu khác như kết cấu khung thép tiền chế, kết cấu dàn không gian vượt nhịp lớn, . . . Bên cạnh đó, việc rút ngắn thời gian tối ưu cũng là một vấn đề cần quan tâm nghiên cứu trong tương lai. Lời cảm ơn Nghiên cứu sinh được hỗ trợ bởi chương trình học bổng đào tạo thạc sĩ, tiến sĩ trong nước của Quỹ Đổi mới sáng tạo Vingroup. 63 Hiếu, N. T., và cs. / Tạp chí Khoa học Công nghệ Xây dựng Tài liệu tham khảo [1] Spunt, L. (1971). Optimum structural design. Prentice-Hall. Englewood Cliffs, New Jersey, USA. [2] Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Addison- Wesley Longman Publishing Co., Inc. Boston, MA, USA. [3] Beyer, H. G. (2001). The theory of evolution strategies. Springer, Germany. [4] Price, K. V., Storn, R. M., Lampien, J. A. (2005). Differential evolution: A practical approach to global optimization. Springer, Germany. [5] Eberhart, R., Kennedy, J. (1995). Particle swarm optimization. Proceedings of IEEE International Con- ference on Neural Networks IV, 1942–1948. [6] Dorigo, M., Stu¨tzle, T. (2004). Ant colony optimization. MIT Press, USA. [7] Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report - TR06, Vol 200. [8] Kaveh, A., Kalatjari, V. (2002). Genetic algorithm for discrete-sizing optimal design of trusses using the force method. International Journal for Numerical Methods in Engineering, 55(1):55–72. [9] Kaveh, A., Talatahari, S. (2008). A discrete particle swarm ant colony optimization for design of steel frames. Asian Journal of Civil Engineering, 9(6):563–575. [10] Saka, M. P. (2003). Optimum design of pitched roof steel frames with haunched rafters by genetic algo- rithm. Computers & Structures, 81(18-19):1967–1978. [11] Saka, M. P. (2009). Optimum design of steel sway frames to BS5950 using harmony search algorithm. Journal of Constructional Steel Research, 65(1):36–43. [12] Hasanc¸ebi, O., Bahc¸eciog˘lu, T., Kurc¸, O., Saka, M. P. (2011). Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm. Computers & Structures, 89(21-22):2037–2051. [13] Phan, D. T., Lim, J. B. P., Ming, C. S. Y., Tanyimboh, T., Issa, H., Sha, W. (2011). Optimization of cold-formed steel portal frame topography using real-coded genetic algorithm. Procedia Engineering, 14:724–733. [14] Phan, D. T., Lim, J. B. P., Sha, W., Siew, C. Y. M., Tanyimboh, T. T., Issa, H. K., Mohammad, F. A. (2013). Design optimization of cold-formed steel portal frames taking into account the effect of building topology. Engineering Optimization, 45(4):415–433. [15] Phan, D. T., Lim, J. B. P., Tanyimboh, T. T., Sha, W. (2017). Optimum design of cold-formed steel portal frame buildings including joint effects and secondary members. International Journal of Steel Structures, 17(2):427–442. [16] Vu, A. T., Werner, F. (2009). Optimization of steel frame structures based on differential evolution algo- rithm. Proceeding of 18th Internaltional conference on the applications of computer science and mathe- matics in Architecture and Civil engineering (IKM). Weimar, Germany. [17] Pham, H. A., Dang, V. H. (2016). Automated optimal design of truss structures using modified DE and SAP2000 open application programming interface (OAPI). The 4th International Conference on Engineering Mechanics And Automation (ICEMA 4). Hà Nội, Việt Nam. [18] TCVN 2737:1995. Tải trọng và tác động. Bộ Khoa học và Công nghệ, Việt Nam. [19] TCVN 5575:2012. Kết cấu thép Tiêu chuẩn thiết kế. Bộ Khoa học và Công nghệ, Việt Nam. [20] Lampien, J. (2002). A constraint handling approach for the differential evolution algorithm. Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), Honolulu, USA. [21] Pham, H. A. (2016). Truss optimization with frequency constraints using enhanced differential evolu- tion based on adaptive directional mutation and nearest neighbor comparison. Advances in Engineering Software, 102:142–154. [22] Anh, P. H., Duong, T. T. (2019). Weight optimisation of functionally graded beams using modified differential evolution. Journal of Science and Technology in Civil Engineering (STCE)-NUCE, 13(2): 48–63. 64
File đính kèm:
- toi_uu_trong_luong_khung_thep_cot_dac_dan_vi_keo_su_dung_thu.pdf