Đề cương ôn tập học kỳ II môn Toán 7
Dạng 2: Tính giá trị biểu thức đại số:
Phương pháp:
Bước 1: Thu gọn các biểu thức đại số.
Bước 2: Thay giá trị cho trước của biến vào biểu thức đại số.
Bước 3: Tính giá trị biểu thức số.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Bạn đang xem tài liệu "Đề cương ôn tập học kỳ II môn Toán 7", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Đề cương ôn tập học kỳ II môn Toán 7
ĐỀ CƯƠNG ÔN TẬP TOÁN 7 - HỌC KỲ II Nhóm Toán 7 - Trường THCS Mỗ Lao Năm học 2020- 2021 I. PHẦN ĐẠI SỐ: Dạng 1: Thu gọn biểu thức đại số: a) Thu gọn đơn thức, tìm bậc, hệ số. Phương pháp: Bước 1: dùng qui tắc nhân đơn thức để thu gọn. Bước 2: xác định hệ số, bậc của đơn thức đã thu gọn. Bài tập áp dụng: Thu gọn đơn thức, tìm bậc, hệ số. A= 3 2 3 4 5 2 x . x y . x y 4 5 ; B= 5 4 2 2 53 8. . 4 9 x y xy x y b) Thu gọn đa thức, tìm bậc, hệ số cao nhất. Phương pháp: Bước 1: Nhóm các hạng tử đồng dạng, tính cộng, trừ các hạng tử đòng dạng. Bước 2: Xác định hệ số cao nhất, bậc của đa thức đã thu gọn. Bài tập áp dụng: Thu gọn đa thức, tìm bậc, hệ số cao nhất. 2 3 2 3 2 2 3 2 2 3A 15x y 7x 8x y 12x 11x y 12x y 5 4 2 3 5 4 2 31 3 1B 3x y xy x y x y 2xy x y 3 4 2 Dạng 2: Tính giá trị biểu thức đại số: Phương pháp: Bước 1: Thu gọn các biểu thức đại số. Bước 2: Thay giá trị cho trước của biến vào biểu thức đại số. Bước 3: Tính giá trị biểu thức số. Bài tập áp dụng: Bài 1: Tính giá trị biểu thức a. A = 3x3 y + 6x2y2 + 3xy3 tại 1 1 x ; y 2 3 b. B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3 Bài 2: Cho đa thức P(x) = x4 + 2x2 + 1; Q(x) = x4 + 4x3 + 2x2 – 4x + 1 Tính : P(–1); P( 1 2 ); Q(–2); Q(1); Dạng 3: Cộng, trừ đa thức nhiều biến Phương pháp: Bước 1: Viết phép tính cộng, trừ các đa thức. Bước 2: Áp dung qui tắc bỏ dấu ngoặc. Bước 3: Thu gọn các hạng tử đồng dạng (cộng hay trừ các hạng tử đồng dạng) Bài tập áp dụng: Bài 1: Cho đa thức: A = 4x2 – 5xy + 3y2; B = 3x2 + 2xy - y2 Tính A + B; A – B ĐỀ CƯƠNG ÔN TẬP TOÁN 7 - HỌC KỲ II Nhóm Toán 7 - Trường THCS Mỗ Lao Năm học 2020- 2021 Bài 2: Tìm đa thức M, N biết : a. M + (5x2 – 2xy) = 6x2 + 9xy – y2 b. (3xy – 4y2) - N= x2 – 7xy + 8y2 Dạng 4: Cộng trừ đa thức một biến: Phương pháp: Bước 1: Thu gọn các đơn thức và sắp xếp theo lũy thừa giảm dần của biến. Bước 2: Viết các đa thức sao cho các hạng tử đồng dạng thẳng cột với nhau. Bước 3: Thực hiện phép tính cộng hoặc trừ các hạng tử đồng dạng cùng cột. Chú ý: A(x) - B(x)=A(x) +[-B(x)] Bài tập áp dụng: Cho đa thức A(x) = 3x4 – 3/4x3 + 2x2 – 3; B(x) = 8x4 + 1/5x3 – 9x + 2/5 Tính: A(x) + B(x); A(x) - B(x); B(x) - A(x); Dạng 5: Tìm nghiệm của đa thức 1 biến 1. Kiểm tra 1 số cho trước có là nghiệm của đa thức một biến không Phương pháp: Bước 1: Tính giá trị của đa thức tại giá trị của biến cho trước đó. Bước 2: Nếu gtrị của đa thức bằng 0 thì gtrị của biến đó là nghiệm của đa thức. 2. Tìm nghiệm của đa thức một biến Phương pháp: Bước 1: Cho đa thức bằng 0. Bước 2: Giải bài toán tìm x. Bước 3: Giá trị x vừa tìm được là nghiệm của đa thức. Chú ý: – Nếu A(x). B(x) = 0 => A(x) = 0 hoặc B(x) = 0 – Nếu đa thức P(x) = ax2 + bx + c có a + b + c = 0 thì ta kết luận đa thức có 1 nghiệm là x = 1, nghiệm còn lại x2 = c/a. – Nếu đa thức P(x) = ax2 + bx + c có a – b + c = 0 thì ta kết luận đa thức có 1 nghiệm là x = –1, nghiệm còn lại x2 = -c/a. Bài tập áp dụng: Bài 1: Cho đa thức f(x) = x4 + 2x3 – 2x2 – 6x + 5 Trong các số sau: 1; –1; 2; –2 số nào là nghiệm của đa thức f(x) Bài 2 : Tìm nghiệm của các đa thức sau. f(x) = 3x – 6; h(x) = x2 – 2x g(x) = (x-3)(16-4x) k(x) = x2-81 m(x) = x2 +7x -8 n(x) = 5x2+9x+4 Dạng 6: Tìm hệ số chưa biết trong đa thức P(x) biết P(x0) = a Phương pháp: Bước 1: Thay giá trị x = x0 vào đa thức. Bước 2: Cho biểu thức số đó bằng a. Bước 3: Tính được hệ số chưa biết. ĐỀ CƯƠNG ÔN TẬP TOÁN 7 - HỌC KỲ II Nhóm Toán 7 - Trường THCS Mỗ Lao Năm học 2020- 2021 Bài tập áp dụng: Bài 1: Cho đa thức P(x) = mx – 3. Xác định m biết P(–1) = 2 Bài 2: Cho đa thức Q(x) = -2x2 +mx -7m+3. Xác định m biết rằng Q(x) có nghiệm là -1. Dạng 7: Bài toán thống kê. Thời gian làm bài tập của các hs lớp 7 tính bằng phút đươc thống kê bởi bảng sau: 4 5 6 7 6 7 6 4 6 7 6 8 5 6 9 10 5 7 8 8 9 7 8 8 8 10 9 11 8 9 8 9 4 6 7 7 7 8 5 8 a- Dấu hiệu ở đây là gì? Số các giá trị là bao nhiêu? b- Lập bảng tần số? Tìm mốt của dấu hiệu? Tính số trung bình cộng? c- Vẽ biểu đồ đoạn thẳng? II. PHẦN HÌNH HỌC: Lý thuyết: 1. Nêu các trường hợp bằng nhau của hai tam giác thường, hai tam giác vuông? Vẽ hình, ghi GT, KL. 2. Nêu định nghĩa, tính chất của tam giác cân, tam giác đều? 3. Nêu định lý Pytago thuận và đảo, vẽ hình, ghi GT, KL. 4. Nêu định lý về quan hệ giữa góc và cạnh đối diện trong tam giác, vẽ hình, ghi GT, KL. 5. Nêu quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu, vẽ hình, ghi GT, KL. 6. Nêu định lý về bất đẳng thức trong tam giác, vẽ hình, ghi GT, KL 7. Nêu tính chất 3 đường trung tuyến trong tam giác, vẽ hình, ghi GT, KL 8. Nêu tính chất đường phân giác của một góc, tính chất 3 đường phân giác của tam giác, vẽ hình, ghi GT, KL. 9. Nêu tính chất đường trung trực của một đoạn thẳng, tính chất 3 đường trung trực của tam giác, vẽ hình, ghi GT, KL. Một số phương pháp chứng minh trong chương II và chương III 1. Chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau: - Cách1: Chứng minh hai tam giác bằng nhau. - Cách 2: Sử dụng tính chất bắc cầu, cộng trừ theo vế, hai góc bù nhau v. v. 2. Chứng minh tam giác cân: - Cách1: Chứng minh hai cạnh bằng nhau hoặc hai góc bằng nhau. - Cách 2: Chứng minh đường trung tuyến đồng thời là đường cao, phân giác - Cách 3: Chứng minh tam giác có hai đường trung tuyến bằng nhau v.v. ĐỀ CƯƠNG ÔN TẬP TOÁN 7 - HỌC KỲ II Nhóm Toán 7 - Trường THCS Mỗ Lao Năm học 2020- 2021 3. Chứng minh tam giác đều: - Cách 1: Cchứng minh 3 cạnh bằng nhau hoặc 3 góc bằng nhau. - Cách 2: Chứng minh tam giác cân có 1 góc bằng 600. 4. Chứng minh tam giác vuông: - Cách 1: Chứng minh tam giác có 1 góc vuông. - Cách 2: Dùng định lý Pytago đảo. - Cách 3: Dùng tính chất: “đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông”. 5. Chứng minh tia Oz là phân giác của góc xOy: - Cách 1: Chứng minh góc xOz bằng góc yOz. - Cách 2: Chứng minh điểm M thuộc tia Oz và cách đều 2 cạnh Ox và Oy. 6. Chứng minh bất đẳng thức đoạn thẳng, góc. Chứng minh 3 điểm thẳng hàng, 3 đường đồng qui, hai đường thẳng vuông góc v.v. . (dựa vào các định lý tương ứng). Bài tập áp dụng: Bài 1 : Cho ABC cân tại A, đường cao AH. Biết AB=5cm, BC=6cm. a) Tính độ dài các đoạn thẳng BH, AH? b) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng ba điểm A, G, H thẳng hàng? c) Chứng minh: . Bài 2: Cho ABC cân tại A. Gọi M là trung điểm của cạnh BC. a) Chứng minh : ABM = ACM b) Từ M vẽ MH AB và MK AC. Chứng minh BH = CK c) Từ B vẽ BP AC, BP cắt MH tại I. Chứng minh IBM cân. Bài 3 : Cho ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh: a) AB // HK b) AKI cân c) d) AIC = AKC Bài 4 : Cho ABC cân tại A ( ), vẽ BD AC và CE AB. Gọi H là giao điểm của BD và CE. a) Chứng minh : ABD = ACE b) Chứng minh AED cân c) Chứng minh AH là đường trung trực của ED. d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh Bài 5 : Cho ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh: a) HB = CK b) c) HK // DE d) AHE = AKD e) Gọi I là giao điểm của DK và EH. Chứng minh AI DE. ĐỀ CƯƠNG ÔN TẬP TOÁN 7 - HỌC KỲ II Nhóm Toán 7 - Trường THCS Mỗ Lao Năm học 2020- 2021
File đính kèm:
- de_cuong_on_tap_hoc_ky_ii_mon_toan_7.pdf