Bài giảng Thống kê ứng dụng - XD - Chương 6&7: Phân phố xác suất - Đặng Thế Gia
Một phân phối xác suất hay thường gọi hơn là một hàm phân phối xác suất là một mô tả toán học của một hiện tượng ngẫu nhiên thông qua khái niệm xác suất.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Thống kê ứng dụng - XD - Chương 6&7: Phân phố xác suất - Đặng Thế Gia", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Thống kê ứng dụng - XD - Chương 6&7: Phân phố xác suất - Đặng Thế Gia
2/17/2019 1 Bộ môn Kỹ Thuật Xây Dựng Khoa Công Nghệ, Trường Đại Học Cần Thơ MÔN HỌC THỐNG KÊ ỨNG DỤNG - XD (KC107) GIÁO VIÊN BIÊN SOẠN ĐẶNG THẾ GIA Chương 6 & 7: PHÂN PHỐI XÁC SUẤT PROBABILITY DISTRIBUTION BM Kỹ thuật xây dựng 1. Luật phân phối xác suất 2. Đặc trưng của phân phối xác suất 3. Phân loại các phân phối xác suất 4. Phân phối rời rạc điển hình 5. Phân phối liên tục điển hình 6. Các bảng tra Nội dung chương 3-3 1. Luật phân phối xác suất 2/17/2019 2 • Một phân phối xác suất hay thường gọi hơn là một hàm phân phối xác suất là một mô tả toán học của một hiện tượng ngẫu nhiên thông qua khái niệm xác suất. • Luật phân phối xác suất của biến X có thể được mô tả một cách duy nhất bởi hàm phân phối lũy tích F(x) (cumulative distribution function, CDF) được định nghĩa như sau: F(x) = P(X ≤ x) với mọi x là số thực (R) Hàm phân phối xác suất x xx i dttfxxFTucLiênBiên pxFRacRòiBiên i )()(: )(: • Hàm phân phối xác suất là quy luật cho biết cách gán mỗi xác suất cho mỗi khoảng giá trị của tập số thực, sao cho các tiên đề xác suất (Probability axioms) được thỏa mãn. • Hàm phân phối xác suất phản ánh mức độ tập trung xác suất về phía trái điểm X. • 0 ≤ F(x) ≤ 1, với mọi x • F(-∞) = 0 và F(+∞) = 1 • F(x) là hàm số không giảm • P(a ≤ X < b) = F(b) – F(a) • Nếu X là biến liên tục thì F’(x) = f(x) Ý nghĩa & Tính chất • Hàm mật độ xác suất của đại lượng ngẫu nhiên liên tục X ký hiệu là f(x) là đạo hàm bậc nhất của hàm phân phối xác suất của đại lượng ngẫu nhiên đó: f(x) = F’(x). Hàm mật độ xác suất )(')(f:liên tucBiên x xkhi 0 ,..,2,1,x xkhi )(:rac ròiBiên i i xFx nip xf i • Một phân phối được gọi là rời rạc nếu hàm phân phối tích lũy của nó bao gồm một dãy các bước nhảy hữu hạn, hoặc vô hạn đếm được, cách quảng nhau. • Do vậy phân phối rời rạc được sinh ra từ một biến ngẫu nhiên rồi rạc X (một biến chỉ có thể nhận giá trị trong một tập hợp hữu hạn hoặc đếm được nhất định). • Một phân phối được gọi là liên tục nếu hàm phân phối tích lũy của nó là hàm liên tục, tức là tập giá trị của biến ngẫu nhiên lắp đầy một khoảng hay toàn bộ trục số thực. • Khi đó nó sinh ra từ một biến ngẫu nhiên X mà P(X=x0) = 0 với mọi x thuộc R. Phân phối rời rạc & Phân phối liên tục 2/17/2019 3 2. Đặc trưng của một phân phối xác suất • Hàm mật độ xác suất • Hàm phân phối xác suất • Giá trị kỳ vọng (giá trị trung bình) • Trung vị • Giá trị thường gặp • Phương sai • Độ xiên • Độ nhọn • Entropy • Hàm sinh moment • Hàm đặc trưng • Cho một biến ngẫu nhiên X, kỳ vọng toán của X là: • Kỳ vọng toán của biến ngẫu nhiên X là bình quân gia quyền (weighted average) của các giá trị khả dĩ của X, khi đó trọng số (gia quyền) tương ứng với xác suất của mỗi xi. • Kỳ vọng toán của biến ngẫu nhiên là con số đăc trưng cho giá trị bình quân của biến ngẫu nhiên đó. dxxfxXETucLiênBiên xpxXERacRòiBiên ixall ii )(.)(: )()(: Kỳ vọng toán với p(xi) là xác suất của giá trị xi Kỳ vọng toán – Tính chất • E(c) = c • E(c*X) = c*E(X) • E(X + Y) = E(X) + E(Y) • E(X - Y) = E(X) - E(Y) • E(X*Y) = E(X)*E(Y) nếu X và Y là các biến ngẫu nhiên độc lập 2/17/2019 4 Giá trị thường gặp • Biến rời rạc: Là giá trị của biến ngẫu nhiên mà tại đó nó có xác suất lớn nhất • Biến liên tục: Là giá trị của biến ngẫu nhiên mà tại đó hàm mật độ đạt giá trị cực đại )( )( 22 222 2 )(.)(: )()()(: )()(: XEx XE dxxfXVTucLiênBiên xpxpxXVRacRòiBiên XEXEXVquátTông ii x ii x i Phương sai • Gọi X là một biến ngẫu nhiên rời rạc, phương sai của X là: với giá trị xi có xác suất p(xi), và E(xi)= Phương sai – Tính chất & Ý nghĩa • V(C) = 0 • V(C*X) = C2*V(X) • V(X±Y) = V(X) + V(Y) nếu X và Y là các biến ngẫu nhiên độc lập • Phương sai của biến ngẫu nhiên X là bình quân gia quyền (weighted average) của bình phương các độ lệch của các biến xi so với giá trị bình quân , khi đó trọng số (gia quyền) tương ứng với xác suất của mỗi xi. x 0 1 2 3 4 p(x) .05 .15 .35 .25 .20 Độ lệch chuẩn • Độ lệch chuẩn của biến ngẫu nhiên rời rạc, ký hiệu s(X), là căn (dương) bậc hai của phương sai: s(X) = √V(X) Ví Dụ • Tổng số lô vật liệu sẽ được bán trong tuần tới với xác suất như sau: • Xác định giá trị kỳ vọng và độ lệch chuẩn? 2/17/2019 5 11.124.1 24.1)20)(.4.24()25)(.4.23( )35)(.4.22()15)(.4.21()05)(.4.20( )x(p)4.2x()X(V 40.2 )20.0(4)25.0(3)35.0(2)15.0(1)05.0(0 )x(px)X(E 5 1i i 2 i 2 5 1i ii s s x 0 1 2 3 4 p(x) .05 .15 .35 .25 .20 Ví dụ • Giả sử xác suất số lô vật liệu bán trong tuần tới như trong ví dụ trước. Tiền lương tuần của nhân viên là 150 ngàn VNĐ cộng thêm 200 ngàn VNĐ tiền thưởng cho mỗi lô vật liệu bán được. • Tính giá trị kỳ vọng và phương sai cho số tiền mà nhân viên có thể nhận? Giải: • Số tiền nhận được trong tuần: Y = 200X + 150 E(Y) = E(200X+150) = 200E(X)+150= 200(2.4)+150=630 $ V(Y) = V(200X+150) = 2002V(X) = 2002 (1.24) = 49,600 $2 Độ xiên (Skewness) – Định nghĩa • Độ xiên là một đại lượng đo lường mức độ mức độ bất đối xứng của phân phối xác suất của một biến ngẫu nhiên. Nó còn tên gọi nữa là hệ số bất đối xứng. Độ xiên (Skewness) – Công thức 2/17/2019 6 Độ xiên (Skewness) – Tính chất • Nếu hệ số này bằng 0, thì phân phối là cân xứng. Các số bình quân, trung vị và giá trị thường gặp (mode) bằng nhau. • Nếu hệ số này lớn hơn 0, thì phân phối nghiêng dương. Số giá trị thường gặp (mode) nhỏ hơn số trung vị, và số trung vị lại nhỏ hơn số bình quân. • Nếu hệ số này nhỏ hơn 0, thì phân phối nghiêng âm. Số bình quân nhỏ hơn số trung vị, và số trung vị nhỏ hơn số giá trị thường gặp (mode). Độ xiên (Skewness) – Tính chất Độ nhọn (Kurtosis) – Định nghĩa • Độ nhọn là một đại lượng thống kê mô tả đo mức độ tập trung của phân phối xác suất của một biến ngẫu nhiên, cụ thể là mức độ tập trung của các quan sát quanh trung tâm của phân phối trong mối quan hệ với hai đuôi. Platy: Rộng, phẳng Mes ... dụng. Gọi Y là số khách hàng không dùng thẻ tín dụng. P(Y>=9) = P(X<=11) = .995 Phân phối Poisson (Poisson Distribution) Phân phối rời rạc Biến có giá trị vô hạn 2/17/2019 15 • Phân phối Poisson là một phân phối xác suất rời rạc. • Nó khác với các phân phối xác suất rời rạc khác ở chỗ thông tin cho biết không phải là xác suất để một sự kiện (event) xảy ra (thành công) trong một lần thử như trong phân phối Bernoulli, hay là số lần mà sự kiện đó xảy ra trong n lần thử như trong phân phối nhị thức, mà chính là trung bình số lần xảy ra thành công của một sự kiện trong một khoảng thời gian hay một phạm vi nhất định. • Giá trị trung bình này được gọi là lamda, kí hiệu là λ (Trong nhiều tài liệu giá trị này cũng được ký hiệu là ). Khái niệm • Thí nghiệm Poisson thường phù hợp với trường hợp của các sự kiện hiếm xảy ra trong một khoảng thời gian nhất định hoặc trong một phạm vi xác định. • Trường hợp điển hình: Số lỗi người đánh máy mắc trong một trang Số khách hàng bước vào một quầy dịch vụ trong một khoảng thời gian xác định (giờ, ngày,) Số cuộc gọi tới trong thời gian một giờ. Khái niệm Tính chất của thực nghiệm Poisson • Số dữ kiện thành công xảy ra trong một khoảng thời gian là độc lập với số dữ kiện thành công xảy ra trong một khoảng thời gian khác. • Xác suất thành công trong một khoảng thời gian xác định: Bằng nhau cho bất kỳ khoảng thời gian nào của cùng kích thức mẫu Tỉ lệ với chiều dài của khoảng thời gian • Xác suất của hai hay nhiều lần thành công sẽ gần với zero khi khoảng thời gian nhỏ dần. Trục hoành là chỉ số k Hàm phân phối xác suất lũy tích 2/17/2019 16 Hàm mật độ xác suất Hàm mật độ (khối) xác suất Trục hoành là chỉ số k. Hàm khối xác suất được định nghĩa dựa trên duy nhất biến nguyên k. Đường nối dùng để minh họa chứ không có nghĩa là liên tục. Đặc trưng Đặc trưng 2/17/2019 17 • Biến ngẫu nhiên Poisson Biến Poisson chỉ số lần thành công xảy ra trong một khoảng thời gian cho trước hoặc trong một miền xác định trong thực nghiệm Poisson. • Phân phối xác suất của biến ngẫu nhiên Poisson )X(V)X(E ...2,1,0x !x e)x(p)xX(P x Biến ngẫu nhiên & Phân phối xác suất 0 0.1 0.2 0.3 0.4 1 2 3 4 5 6 7 8 9 10 11 3678.e !0 1e)0(p)0X(P 1 01 3678.e !1 1e)1(p)1X(P 1 11 1839. 2 e !2 1e)2(p)2X(P 121 0613. 6 e !3 1e)3(p)3X(P 131 0 1 2 3 4 5 Trục X trong Excel bắt đầu với x=1!! Phân phối xác suất Poisson Phân phối xác suất Poisson với =1 0 0.05 0.1 0.15 0.2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0.05 0.1 0.15 0.2 1 2 3 4 5 6 7 8 9 10 11 0 0.05 0.1 0.15 0.2 0.25 0.3 1 2 3 4 5 6 7 8 9 10 11 Phân phối xác suất Poisson với =2 Phân phối xác suất Poisson với =5 Phân phối xác suất Poisson với =7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2/17/2019 18 • Nghiên cứu giao thông cho thấy số xe qua quầy thu phí giao thông là 360 xe/giờ. • Tìm xác suất để chỉ có 2 xe/phút? • Dùng công thức: = 360/60 = 6 xe/phút Gọi X là số xe qua trạm trong thời gian 1 phút. • Dùng bảng tra: P(X = 2) = P(X<=2) - P(X<=1) = .062 - .017 = .045 0446. !2 6e)2X(P 26 Ví dụ 2 Tìm xác suất để chỉ có 2 xe đến trong thời gian 1 phút? (Dùng bảng tra) P(X = 2) = P(X<=2) - P(X<=1) = .062 - .017 = .045 K 0.1 3 . 6 . 0 0.905 0.05 0.002 1 0.995 0.199 0.017 2 1 0.423 0.062 Xác suất để có tối thiểu 4 xe/phút? (Dùng bảng tra) P(X>=4) = 1 - P(X<=3) = 1 - .151 = .849 • Khi n quá lớn, xác suất nhị thức sẽ tính toán với khối lượng lớn. • Nếu p khá nhỏ (ví dụ: p< .05), chúng ta có thể tính gần đúng phân phối nhị thức bằng cách sử dụng phân phối Poisson. • Cho = np và thực hiện như sau: )xX(P)xX(P PoissonBinomial Với tham số n & p Với = np Xấp xỉ Poisson của phân phối Nhị thức • Một kho hàng thường kiểm tra 50 viên gạch khi có lô hàng mới đến, và sẽ chỉ chấp nhận lô hàng nếu không quá 2 viên bị phát hiện có lỗi. • Một lô hàng trong thực tế có 2% số gạch lỗi. Tìm xác suất để lô hàng được chấp nhận? Ví dụ 3 2/17/2019 19 Giải • Đây là thực nghiệm nhị thức với n=50, p=.02. • Giá trị n khá lớn, nếu dùng bảng tra cũng không có giá trị, p=0.02<.05, do vậy sử dụng xấp xỉ Poisson [=(50)(.02)=1] • P(Xpoisson<=2) = .920 Giá trị này gần với xác suất nhị thức (=.922) 5. Phân phối liên tục điển hình Phân phối đều liên tục (Continuous Uniform Distribution) Phân phối liên tục Biến có giá trị trên một khoảng bị chặn • Phân phối đều liên tục, đôi khi còn được gọi là phân phối hình chữ nhật, là một phân phối mà xác suất xảy ra như nhau cho mọi kết cục của biến ngẫu nhiên liên tục. • Hàm mật độ xác suất của phân phối đều như sau: • Kỳ vọng toán và phương sai: Khái niệm 12 )()( 2 E(X) .1)( 2abVba bxa ab xf X 2/17/2019 20 Hàm phân phối & Hàm mật độ Đặc trưng Đặc trưng • Thời gian chờ kể từ khi đặt hàng và nhận hàng, nằm trong khoảng 100 đến 180 phút, là phân phối đều. • Vẽ sơ đồ và viết hàm mật độ? • Tìm xác suất để khoảng thời gian chờ nằm trong khoảng từ 2 giờ đến 2,5 giờ? 100 180 1/80 f(x) = 1/80 100<=x<=180 x 120 150 P(120<= x<=150) = (150-120)(1/80) = .375 Ví dụ 4 2/17/2019 21 Phân phối Khi-Bình Phương k2 (Chi-squared Distribution) Phân phối liên tục Biến có giá trị trên một nửa hữu hạn • Phân phối Khi-Bình phương với k bậc tự do là sự phân bố của một tổng các bình phương của k biến ngẫu nhiên độc lập tiêu chuẩn bình thường. • Đó là một trường hợp đặc biệt của phân phối gamma và là một trong những bản phân phối xác suất được sử dụng rộng rãi nhất trong thống kê suy luận. Khái niệm Hàm phân phối xác suất lũy tích Hàm mật độ xác suất 2/17/2019 22 • Đồ thị của hàm mật độ xác suất là đường cong không đối xứng, lệch mạnh về phía trái. • Khi bậc tự do k≥30, đồ thị hàm mật độ dịch chuyển về bên phải và gần đối xứng. • Khi đó đồ thị hàm mật độ của phân phối Khi-Bình Phương tiệm cận phân phối chuẩn. Hàm mật độ xác suất Đặc trưng Đặc trưng Phân phối mũ (Exponential Distribution) Phân phối liên tục Biến có giá trị trên một khoảng nửa hữu hạn 2/17/2019 23 • Phân phối mũ có thể dùng để mô phỏng: Thời gian giữa các cuộc gọi Thời gian giữa các lần xe qua trạm thu phí Tuổi thọ của thiết bị điện tử • Khi số lần xuất hiện của một sự kiện tuân theo phân phối Poisson, thì thời gian giữa các lần xuất hiện của sự kiện đó tuân theo phân phối mũ. Khái niệm • Một biến ngẫu nhiên theo phân phối mũ nếu hàm mật độ xác suất là: f(x) = le-lx, x>=0 • l là một tham số của phân phối (l>0) E(X) = 1/l V(X) = 1/l P(X>a) = e- la Tính chất 0 0.5 1 1.5 2 2.5 f(x) = 2e-2x f(x) = 1e-1x f(x) = .5e-.5x 0 1 2 3 4 5 Phân phối mũ cho l = 0.5, 1, 2 0 0.5 1 1.5 2 2.5 a b P(a<x<b) = e-la - e-lb • Lượt xe chạy qua trạm thu phí (độc lập và ngẫu nhiên) đạt mức trung bình 360 xe/giờ. Dùng phân phối mũ tính xác suất để thời gian giữa hai lượt xe cách nhau một phút. Giải • Gọi X là thời gian (phút) trôi qua giữa hai lượt xe. X là biến phân phối mũ với l = 360/60 = 6 xe/phút. P(X>.5) = e-6(.5) = .0498 Ví dụ 5 2/17/2019 24 • Tính xác suất để không có xe nào chạy đến trong khoảng thời gian ½ phút? Giải • Nếu Y là số lượt xe đến trong vòng ½ phút, khi đó Y là biến theo phân phối Poisson với = (.5)(6) = 3 xe / ½ phút P(Y=0) = e-3(30)/0! = .0498. Bình luận: Nếu chiếc xe đầu tiên không đến trạm trong vòng ½ phút thì chiếc xe kế tiếp cũng không đến trong vòng ½ phút. Do vậy, không ngạc nhiên khi xác suất ở câu hỏi này bằng với xác suất của câu hỏi trước. • Tuổi thọ của transitor (bán dẫn) tuân theo phân phối mũ, với giá trị bình quân là 1000 giờ. • Tính xác suất cái transistor hoạt động được từ 1000 đến 1500 giờ? Giải • Gọi X là tuổi thọ của transistor (giờ) E(X) =1000 = 1/l, l = 1/1000 = .001 P(1000<X<1500) = e-(.001)(1000) - e-(.001)(1500) = .1448 Ví dụ 6 Phân phối chuẩn (Normal Distribution) Phân phối liên tục Biến có giá trị trên toàn tập số thực • Phân phối chuẩn, còn gọi là phân phối Gauss, là một phân phối xác suất cực kì quan trọng trong nhiều lĩnh vực. • Nhiều biến ngẫu nhiên có thể được mô phỏng thành phân phối chuẩn, • Nhiều phân phối khác có thể được tính gần đúng từ phân phối chuẩn. • Phân phối chuẩn là phân phối nền tảng của thống kê suy luận. • Nó là họ phân phối có dạng tổng quát giống nhau, chỉ khác tham số giá trị trung bình μ (vị trí ) và phương sai σ2. Khái niệm 2/17/2019 25 • Phân phối chuẩn còn được gọi là đường cong chuông (bell curve) hay đường cong gò (mount) do hình dạng của đồ thị của hàm mật độ xác suất. • Phân phối chuẩn chuẩn hóa (standard normal distribution), còn gọi là phân phối chuẩn tắc, là phân phối chuẩn có giá trị trung bình μ=0 phương sai σ2=1 (đường cong màu đỏ trong hình bên dưới). Khái niệm ...71828.2...14159.3 2 1)( 2)])[(2/1( evàvói xexf x s Hàm phân phối xác suất lũy tích Hàm phân phối xác suất là đường cong phản xứng. Đường màu đỏ là phân phối chuẩn chuẩn hóa. Hàm mật độ xác suất Hàm mật độ xác suất đối xứng qua trục tại . Đường màu đỏ là phân phối chuẩn chuẩn hóa. Đặc trưng 2/17/2019 26 Đặc trưng Độ lệch chuẩn ảnh hưởng hình dạng hàm mật độ s= 2 s =3 s =4 = 10 = 11 = 12 Giá trị kỳ vọng ảnh hưởng vị trí hàm mật độ Quy tắc thực nghiệm • Lưu ý 2 đặc điểm giúp tính xác suất phân phối chuẩn: • Phân phối chuẩn là hàm đối xứng • Bất kỳ một phân phối chuẩn nào cũng có thể được chuyển về dạng phân phối chuẩn chuẩn hóa Các bài toán xác suất phân phối chuẩn 2/17/2019 27 • Thời gian hoàn thành (và đạt điểm tuyệt đối) bài kiểm tra giữa kỳ môn TKUD của các sinh viên trong lớp tuân theo phân phối chuẩn với thời gian bình quân là 60 phút và độ lệch là 8 phút. • Tính xác suất để một sinh viên hoàn thành trong khoảng thời gian 60 đến 70 phút? Ví dụ 7 Giải • Gọi X là thời gian cần để hoàn thành bài kiểm tra, chúng ta cần tìm xác suất P(60<X<70). • Xác suất này có thể được tính bằng cách chuyển biến X (phân phối chuẩn) thành một biến Z tuân theo phân phối chuẩn hóa. x xXZ s E(Z) = 0 V(Z) = 1 Mọi biến pp chuẩn X với & s, đều có thể chuyển sang biến Z. Vì vậy, sau khi xác suất của biến (chuẩn hóa) Z đã được tính thì có thể suy ra xác suất của biến (chuẩn) X. P(60<X<70) = P( < < )60 X 70 - 60 - 60 s8 8 = P(0<Z<1.25) Để thực hiện bài toán, cần tính xác suất theo phân phối chuẩn hóa z 0 0.1 . 0.05 0.06 0.0 0.0000 0.0040 0.0199 0.0239 0.1 0.0398 0.0438 0.0596 0.636 . . . . . . . . . . 1.0 0.3413 0.3438 0.3531 0.3554 . . . . . . . . . . 1.2 0.3849 0.3869 . 0.3944 0.3962 . . . . . . . . . . . . Dùng công thức hoặc sử dụng bảng tra để tìm xác suất chuẩn hóa. Giá trị xác suất tương ứng với phần diện tích giữa Z=0 và Z=z0 > 0 Z = 0 Z = z0 P(0<Z<z0) 2/17/2019 28 P(60<X<70) = P( < < )60 X 70 - 60 - 60 s8 8 = P(0<Z<1.25) z 0 0.1 . 0.05 0.06 0.0 0.0000 0.0040 0.0199 0.0239 0.1 0.0398 0.0438 0.0596 0.636 . . . . . . . . . . 1.0 0.3413 0.3438 0.3531 0.3554 . . . . . . . . . . 1.2 0.3849 0.3869 . 0.3944 0.3962 . . . . . . . . . . . . Trong ví dụ này z0 = 1.25 0.39440.39440.39440.39440.39440.3944= 0.3944 • Do tính đối xứng của phân phối chuẩn, có thể tính xác suất cho giá trị âm của Z0 (-Z0) như sau: -z0 +z00 P(-z0<Z<0) = P(0<Z<z0) Vận dụng tính đối xứng • Tính các xác suất sau: P(Z>1.47) = ? 1.47 0.5 - P(01.47) 0 P(Z>1.47) = 0.5 - 0.4292 = 0.0708 Ví dụ 8 -2.25 1.85 P(-2.25<Z<1.85) = ? P(-2.25<Z<0) = ? 0 2.25 P(0<Z<1.85) = .4678 P(0<Z<2.25) = .4878 .4878 P(-2.25<Z<1.85) = 0.4878 + 0.4678 = 0.9556 2/17/2019 29 P(.65<Z<1.36) = ? .65 1.36 0 P(0<Z<1.36) = .4131P(0<Z<.65) = .2422 P(.65<Z<1.36) = .4131 - .2422 = .1709 • Suất thu lợi (gọi là X) tuân theo luật phân phối chuẩn với giá trị bình quân 30% và độ lệch chuẩn 10% • Tính xác suất suất thu lợi (X) có thể vượt 55%? = 30% X = 55% 0 Z =2.5 =.5 - P(0<Z<2.5) = .5 - .4938 = .0062 P(X>55) = P(Z> ) = P(Z>2.5) 55 - 3010 Ví dụ 9 30%22% .80-.8P(X<22) = P(Z< ) = P(Z< - .8) 22 - 30 10 =P(Z>.8) = 0.5 - P(0<Z<.8) = 0.5 - .2881 = .2119 • Tính xác suất suất thu lợi (X) có thể dưới 22%? 0.6331 .5 0 z z = .34 .1331 Ví dụ 10 • Nếu Z là biến chuẩn hóa, xác định giá trị của Z để: P(Z<z)=0.6331 2/17/2019 30 0.025 Z0.0250 0.475 1.96- Z0.025-1.96 0.025 Ví dụ 11 • Xác định Z0.025? Giải • ZA là giá trị mà tại đó diện tích (đường chuẩn hóa) về phía phải bằng A. Phân phối Student (Student Distribution) Phân phối liên tục Biến có giá trị trên toàn tập số thực • Phân phối student (phân phối t) là phân phối xác suất liên tục phát sinh khi ước tính bình quân của một tổng thể phân bố chuẩn khi kích thước mẫu nhỏ và độ lệch tiêu chuẩn của tổng thể chưa được biết rõ. • Phân phối chuẩn mô tả một tổng thể đầy đủ, còn phân phối student mô tả một mẫu được rút ra từ tổng thể đầy đủ; do vậy, phân phối t sẽ khác nhau cho các kích thước mẫu khác nhau. • Khi mẫu càng lớn (n lớn), phân phối t càng gần phân phối chuẩn. Khái niệm Hàm phân phối xác suất lũy tích 2/17/2019 31 Hàm mật độ xác suất Đặc trưng Đặc trưng 6. Các bảng tra Statistical Tables 2/17/2019 32 Bảng tra của phân phối chuẩn tắc BM Kỹ thuật xây dựng Bảng tra của phân phối chuẩn tắc BM Kỹ thuật xây dựng Bảng tra của phân phối Student BM Kỹ thuật xây dựng Đuôi trên df .25 .10 .05 1 1.000 3.078 6.314 2 0.817 1.886 2.920 3 0.765 1.638 2.353 t0 Giả sử: n = 3 df = n - 1 = 2 a = .10 a/2 =.05 2.920 t Values a / 2 P(X >tk,a) = a /2 =.05 P(|X|>tk,a) = a P(X tk,a) = a .5 .20 .10a Do phân phối là đối xứng nên: P(X tk,a) = a /2 Bảng tra của phân phối Student BM Kỹ thuật xây dựng 2/17/2019 33 Bảng tra của phân phối Khi-Bình phương BM Kỹ thuật xây dựng XIN CẢM ƠN!
File đính kèm:
- bai_giang_thong_ke_ung_dung_xd_chuong_67_phan_pho_xac_suat_d.pdf